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1 Executive Summary 

In the present document, D5.2 Report on Integration of the CECCM, we provide a comprehensive description of 
the work carried out thus far on the integration of the Cloud Edge Computing Continuum Manager (CECCM) 
components within the AC3 project.  As per [1] D5.1 Initial Integration and proofs of concept plan, a Use Case 
(UC) oriented approach to integration is taken, in which the CECCM components of the architecture are 
integrated across the three UCs (Internet of Things and Data, Smart Monitoring System using Unmanned Aerial 
Vehicles, and Deciphering the universe: processing hundreds of TBs of astronomy data), subject to their 
relevance to the specific UC. The core aim is to clearly demonstrate how the integration of the CECCM 
components supports and augments the UCs, and the work completed towards that goal. As such, this report 
gives a comprehensive level of detail on the partial technical implementation of the component integration. 

In Sections 3, 4, and 5, on a UC basis, we briefly revisit the core goals and objectives and then describe the 
architecture of both the UC application and testbed. We then give a detailed description and workflow of how 
the CECCM components are integrated into the UC, before finally going into a detailed description of the 
integration of each component. A brief summary of the 3 UCs is given below: 

1. UC1, IoT and Data, strives to optimize resource allocation in office buildings. It involves deploying 

sensors to monitor environmental factors and human presence, with the goal of maximizing occupant 

health and comfort by adjusting lighting and heating systems in real-time.  

2. UC2, Smart Monitoring System using UAVs, revolves around the development and implementation of a 

Smart Monitoring System utilizing unmanned aerial vehicles (UAV), AI/Machine Learning (ML) 

technologies, and edge computing to enhance video surveillance and environmental monitoring. Its 

primary goal is to optimize urban security, traffic management, and environmental tracking through the 

CECCM. 

3. UC3, Deciphering the universe: processing hundreds of TBs of astronomy data, analyses large 3D data 

cubes of astronomy data, which contain a detailed image and spectral information about galaxies, to 

extract key insights such as stellar kinematics and population characteristics. Its main challenge is that 

handling these vast datasets requires significant computing power, memory, and efficient data 

management, as well as scalable and distributed processing capabilities. 

All the UCs will demonstrate the core components of the AC3 architecture, including the GUI, OSR, LCM, and 

LMS. While UC2 highlights the integration of far-edge nodes, such as drones, both UC1 and UC2 showcase data 

management capabilities; specifically focusing on the integration of hot and cold data sources, respectively. 

Additionally, each UC will incorporate AI-based algorithms, as defined in WP3 and WP4, to enhance LCM 

functionalities and manage application life cycles. This includes features such as AI-driven application migration 

and AI/XAI-based workload scalability management.  

Further, within each UC section, and specifically in their concluding integration summaries, the deliverable 

provides a clear status of integrated components, identifying those that have been finalized and those that 

require further work, building upon the initial integration plans outlined in D5.1.  

The main conclusion of this report, detailed in Section 6, is that, through the extensive collaborative work carried 

out by both the UC and component owners, a clear path to realising the AC3 vision is now in place. Based on the 

strong foundational work described within this report, the consortium can now progress towards delivering 

tangible benefits of the CECCM through demonstrations, experimentation, and results within the final phase of 

the project. 
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2 Introduction 
2.1 Overview – Purpose and objectives 

To date, the project has been focused on designing and refining the core AC3 CECCM architecture, as well as 

cultivating innovation within each of the CECCM component areas. In D5.1, we then outlined the Initial 

integration and proofs of concept plan, and in this deliverable, we follow this up with a detailed report on the 

progress towards these integration goals. As such, the core objective of this deliverable is to present the current 

state of the component integration. This document gives a detailed overview of how the components are 

integrated into each UC, in terms of interface points and interaction flows. It also gives a detailed technical 

description of the implementation of each of the CECCM components, which gives a clear sense of the level of 

work that has been carried out to date. 

As discussed in D5.1, the approach taken has been to align the integration activities with the UCs and to use 

these as drivers for selection, implementation, and evaluation of the relevant parts of the AC3 architecture. This 

gives the integration a clear focus and direction, while also delivering component integrations that present the 

most value towards the core goals of that UC.  

2.2 Link with other project activities 

This deliverable is a continuation from [1] D5.1 “Initial integration and proofs of concept plan”, and provides 

insights into the partial developments, integrations, and proof of concept activities related to Task T5.1. The work 

done in the UC adheres to the requirements defined in D2.4, “Business Analysis of CECC and Use Case 

Requirements” [2]. Regarding the data management mechanism, D3.3, “Initial Report on Data Management for 

Applications in CECC” [3], provides direct feedback for the design of the overall system and its interface with AC3 

service deployment and management mechanisms. D4.1, “Initial Report on Mechanisms that Enable Green-

Oriented Zero Touch Management of CECC Resources” [4], informs the work on resource discovery and 

monitoring, AI/ML models for resource management, green-oriented LCM decisions for resource management, 

and networking programmability of CECC. D3.1, “Initial report on the Application LCM in the CEC” [5], navigates 

through the various components related to the user plane of the CECCM, namely the User Interfaces, Application 

Profiles, Ontology Modeling Tools and Application Descriptor Models. Moreover, D2.3 “Report on technological 

tools for CECC” [6] provides a comprehensive overview of the technological tools, laying the groundwork for their 

integration within the AC³ framework. The careful selection and analysis of these tools in D2.3 was a crucial initial 

step toward ensuring a smoother integration process in subsequent work packages. Finally, D2.1 “CECC 

framework and CECCM” [1] provides the architecture framework for all UC. 

 

2.3 Mapping AC3 Outputs 

The purpose of this section is to map AC3 Grant Agreement commitments, both within the formal Deliverable 

and Task description, against the project’s respective outputs and work performed. 

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions 

AC3 GA 
Component 

Title 

AC3 GA Component 
Outline 

Respective Document 
Chapter(s) 

Justification 
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DELIVERABLE 

D5.2 Report on Integration of the CECCM: 

“Report on the implementation of the CECCM and integration of components.” 

TASKS    

Task T5.1: AC3 
components 
integration 

“Each partner involved will 
develop their individual 
components and/or 
functions and show their 
project results based on 
the tests done in their labs, 
where all essential 
functions can be tested.” 

Sections 3.3, 3.4, 4.3, 
4.4, 5.3, 5.4 

For each UC, the “Component 
Integration Design” section 
describes how and which AC3 
components are leveraged by the 
CECCM software to support the 
respective UC, while the 
“Component Integration Status” 
sections detail the progress of 
integrating these components to 
enable that support. 

Task T5.2: 
Testbed 
integration 

“This task will concern the 
integration of the software 
and hardware needed to 
run the three UCs.” 

Sections 3.2, 4.2, 5.2 

The “Use Case Architecture” 
section of each UC describes the 
core infrastructure set up by 
project partners to deploy 
applications and AC3 components 
for the respective UC. 

Task T5.3: Field 
trials execution 

In this task, the evaluation 
of the solutions proposed 
in WP3/4 will be 
performed through 
simulation and 
experimentation of the 
three PoC. 

Sections 3.5, 4.5, 5.5 

For each UC, the “Results” section 
demonstrates how the 
experimentations and simulations 
can validate that the AC3 
components and CECCM software 
meet the KPIs and metrics 
required by the respective UC 
applications. 

 

2.4 Deliverable Overview and Report Structure 

Sections 3, 4, and 5: UC1, UC2, and UC3 

Sections 3, 4, and 5 describe the implementation and integration efforts for UC1 (IoT and Data), UC2 (Smart 

Monitoring System using UAVs), and UC3 (Processing TBs of Astronomy Data), respectively. While the UCs are 

separated for clarity, all three sections share a common internal structure to ensure consistency, as follows: 

• Use Case Description and Objectives: Provides an overview of the UC goals and core functionalities (e.g., 

optimizing building operations for UC1, enhancing urban surveillance for UC2, processing astronomical 

data for UC3), setting the stage for the integration work. 
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• Use Case Architecture: This subsection details the architecture of the UC, including the application 

design and testbed setup, highlighting how they support the UC objectives within the AC3 framework. 

• Component Integration Design: Explains the design of CECCM component integration for the UC, 

detailing how components (e.g., EDC Connectors, LiSO, Maestro, OSR) interact with the UC to enhance 

functionality and performance. 

• Component Integration Status: Offers a detailed technical update on the implementation status of each 

integrated CECCM component, including progress on data management, orchestration, and monitoring 

systems. 

• Results: Presents any initial results from the integration efforts, such as experimental outcomes or 

system performance metrics, where available, with further details deferred to future deliverables. 

Section 6: Conclusions 

This section summarizes the deliverable key findings, emphasizing the collaborative work between UC and 

component owners. It reaffirms the progress toward the AC3 vision and outlines the next steps for achieving 

tangible benefits through demonstrations and experimentation. 

Section 7: References 

This section lists all external sources, including project deliverables and relevant scientific publications, that 

provide foundational context, data, or methodologies cited within the deliverable. This ensures transparency 

and enables readers to access original source material for further information. 

Section 8: Annex 

This section provides a complete view of the application descriptors that can be generated by the OSR for each 

of the UCs, detailing the microservices, dependencies, and group affinities for each. 
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3 UC1 
3.1 Use Case Description  

UC1 introduces an innovative IoT-based, smart sensing and monitoring framework designed to leverage the 

transformative potential of edge AI technologies within a Cloud Edge Computing Continuum (CECC) 

infrastructure. It aims to enhance the monitoring and management of infrastructures ranging from individual 

smart homes to expansive smart grids on a national scale, regardless of the underlying technologies for data 

collection and data communication. In this context, UC1 is engineered to integrate physical and digital realms 

more seamlessly than ever, thereby managing and processing a significantly larger volume of IoT data to enable 

timely decisions and responsive actions based on sensed conditions. It also focuses on data fusion, integrating 

outputs from diverse sensors to create detailed profiles and detect patterns that help in proactively managing 

events and minimizing their impact on infrastructure operations. This advanced functionality not only supports 

basic applications like air quality monitoring but also intends to enable immediate, localized decision-making 

through a blend of IoT innovation and edge computing intelligence. 

3.1.1 Objectives 

UC1 is set to showcase the remarkable capabilities of the CECCM, with a keen focus on several ambitious 

objectives that highlight its potential: 

• Intuitive application definition: Leveraging an intuitive GUI and Ontology and Semantic aware Reasoner 

(OSR), the application developer can efficiently define and deploy microservice applications within the 

CECCM framework. This system will simplify the user experience, making it easier to harness cutting-

edge technology, including cloud and edge domains and AI/ML capabilities. Moreover, the system 

includes several essential components that are integral to data management: Catalogues, which provide 

descriptions for available data sources; Data Provider Connector, offering access to the data made 

available; Data Consumer Connector, which initiates the streaming of data from the source to the 

application microservices; Data Mappers, responsible for transforming incoming data as needed; Data 

Manipulator, which handles the core application logic; and a Message Broker, responsible for 

transferring data between the various application components, ensuring smooth communication and 

synchronization throughout the system.   

• Automatic Deployment and Zero-Touch Management: UC1 will demonstrate the robust Life-Cycle 

Management (LCM) capabilities of the CECCM developed in AC3, enabling the automatic deployment, 

monitoring, and maintenance of microservice applications. Using AI and ML-driven zero-touch 

management algorithms, the system can autonomously optimise and sustain application performance. 

• Microservice Deployment and Migration: The CECCM’s resilience will be further highlighted by its ability 

to deploy and manage microservices across cloud-edge environments. Should the application in an edge 

deployment become unavailable or face resource limitations, the system can automatically migrate 

services to alternative cloud infrastructures, ensuring uninterrupted service delivery and continuity. 

• Data Analysis and Decision-Making for Smart Building Installations: By leveraging AI and ML techniques, 

the system will enable real-time analysis for the environmental and human presence detection data. This 

real-time data analysis will contribute to enhanced building monitoring for actionable insights and 

facilitate AI-based decision-making. 
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3.1.2 UC1 Stakeholders 

3.1.2.1 End Users / Smart Building Operators 

The primary beneficiaries of the deployed UC1 application are the building operators (in our case, the operators 

of the IQU facility). They rely on the system's real-time insights to monitor and manage indoor environmental 

conditions such as CO₂ levels, temperature, and humidity in conjunction with human presence information. By 

leveraging these insights, they ensure occupant safety, comfort, and well-being by adapting the building's air 

circulation, heating, or cooling. Through real-time alerts, analytics dashboards, and historical data trends, they 

can make informed decisions or even trigger proactive maintenance and improved environmental management 

practices to ensure the best and most cost-effective measures are taken.  

Although building occupants do not interact directly with the system, they also benefit from AI-assisted 

automation and decision-making that optimize their surroundings and allow them to access limited information 

about their workplace. 

3.1.2.2 Application/Software Developers 

The Application and DevOps teams are responsible for designing, implementing, and deploying the microservices 

that comprise the UC1 application. These include modules for data ingestion from IoT sensors, data 

preprocessing, ML-based inference (e.g., room occupancy prediction), and real-time alerting mechanisms. They 

also train the ML model needed based on real-world data available in the  AC3 Data Catalogue. 

The DevOps team also handles these services' packaging, deployment, and lifecycle automation using the 

CECCM. By integrating the AC3 components, they benefit from intuitive and efficient automated deployment, 

monitoring, maintenance, and migration of microservices between the edge and cloud domains to maintain 

performance. This significantly reduces operational overhead and simplifies the management of AI-powered 

microservices in an edge environment. 

3.1.2.3 Infrastructure Provider / CECCM Integrator 

They are responsible for deploying and maintaining the edge and cloud computing environments. This includes: 

• Provisioning and configuring physical hardware (IoT sensors, data collectors nodes, and servers) 

• Deploying the Kubernetes (K8s)-based Local Management System (LMS) in the computing domains 

• Integrating the CECCM components (including LiSO for LCM, LMS, GUI, OSR, algorithms developed as 

enablers, and so on) 

The infrastructure provider ensures that the CECCM is available and operational to support the DevOps and 

Application teams during application deployment and runtime. They also handle the secure communication and 

synchronization between data sources, edge, and cloud domains. 

3.2 Use Case Architecture 

3.2.1 Use Case Application 

The UC1 application centres on developing an IoT-enabled system for monitoring and optimizing building 

operations in real time. By deploying a network of sensors throughout a building environment, the system 

continuously gathers data on energy consumption, indoor environmental conditions such as temperature, 

humidity, and CO₂ levels, as well as occupancy patterns and equipment performance. This rich stream of data 
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provides the foundation for intelligent analysis that supports energy-efficient operation, improved indoor 

comfort, and predictive maintenance strategies.  

The application demonstrates how buildings can evolve into smart, responsive infrastructures by leveraging IoT 

technologies to make informed decisions automatically or with minimal human intervention. To enable this, the 

system is built on a robust data infrastructure that supports real-time processing, semantic interoperability 

across heterogeneous devices, secure and privacy-compliant data sharing, and scalable analytics. Through this 

approach, we illustrate how IoT-based monitoring can drive sustainability, reduce operational costs, and 

contribute to the transformation of traditional buildings into intelligent, adaptive spaces that actively participate 

in wider smart city and digital twin ecosystems. 

The core of the application is split into two parts, data input and data processing. The first part is responsible for 

the continuous acquisition and integration of data generated by the building’s IoT infrastructure. A diverse 

network of sensors is deployed across the building to monitor environmental conditions (such as temperature, 

humidity, and air quality, etc.). The system ingests high-frequency data streams from these sources through the 

AC3 data management, handling issues of heterogeneity and interoperability across different sensor types and 

communication protocols. It ensures reliable data collection through real-time or near-real-time pipelines built 

using the AC3 data management addons. This lays the groundwork for intelligent processing by maintaining an 

up-to-date and structured view of the building’s operational context. 

Building upon the data collected from the IoT infrastructure, the second part of the application focuses on 

advanced data analysis using machine learning models. This includes both unsupervised and supervised learning 

techniques tailored for detecting anomalies in the building’s behaviour and forecasting future conditions. 

Anomaly detection models are trained to identify deviations from typical patterns, which may indicate sensor 

faults, equipment failures, or unusual usage behaviours. In parallel, forecasting models predict key variables such 

as energy consumption, temperature evolution, or occupancy trends, enabling proactive management 

strategies. These insights can be used to optimize energy use, schedule maintenance, and enhance user comfort, 

ultimately supporting data-driven decision-making in building operations. 
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Figure 1 - Dashboard showing sensor readings, processing speed, and machine learning statistics in real time. 

Figure 1 shows a dashboard view where the users can review the conditions reported by a specific sensing device. 

This data includes metrics for both the actual values coming from the sensors and metrics regarding the 

processing speed during the first part of the application, as well as the statistics during the application of the 

machine learning models on the received data. These metrics are primarily collected and used inside the UC1 

application to evaluate its performance and its operation. 

3.2.2 UC Testbed – Hardware and Software 

The broad UC1 testbed integrates IoT, edge computing, and cloud technologies, which are detailed in the 

following section, as illustrated in Figure 2: 

Edge Domain: An edge server hosting a K8s cluster forms the edge domain, optimizing resource management 

for the UC1 AC3 application. This setup allows for data processing close to the source, minimizing communication 

costs and latency. However, high IoT traffic can lead to increased processing times beyond the specified SLAs. 

Cloud Domain: UC1 utilizes a K8s cluster hosted by ION for cloud services, facilitating service migration in AC3. 

This cloud environment can manage significant data volumes, handling peaks by transferring processing from 

the edge to the cloud, which may increase latency but ensures compliance with SLAs. Performance monitoring 

tools like Prometheus and Grafana are hosted here for data visualization and analysis. 

Data Source Domain: This domain is focused on real-time IoT data collection and transmission, utilizing: 
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• IoT Sensors: The IQU building is equipped with Sensirion SCD41 CO2 sensors and Shelly Motion 2 devices 

for monitoring. 

• Raspberry Pi4 & Pi5 Devices: These compact, cost-effective single-board computers run software for 

managing sensor data and provide 5G connectivity via SIM8200EA-M2 5G HATs or Wi-Fi as an alternative. 

 

 

Figure 2. Depiction of the UC1 Data Source, Edge and Cloud Domains and the flow of data between them. 

3.2.2.1 Data Source Testbed 

The UC1 data source is based on an IoT deployment in the IQU offices that represents the IoT infrastructure to 

be used for UC1. Figure 3 depicts the setup within an office environment, covering multiple rooms including a 

Meeting Room, R&D Room, W&D Room, and a Kitchen. The testbed integrates various IoT devices and sensors 

across these spaces to enable real-time monitoring, automation, and data-driven insights. Throughout the office, 

multiple environmental sensors are deployed, positioned strategically in key locations such as workspaces, 

restrooms, and common areas. These sensors measure parameters such as temperature, humidity, air quality 

(as CO2 concentration), and occupancy, providing a comprehensive dataset for the analysis of the conditions 

inside the office building, the goal of the AC3 UC1 application. Alongside the sensors, the testbed incorporates 

Raspberry Pi devices, which serve as data collection nodes. These devices are present in each room to facilitate 

data aggregation. The primary objectives of this IoT testbed include environmental monitoring, where real-time 

tracking of air quality and climate conditions provides insights for occupancy, energy optimization, and indoor 

comfort. The inclusion of edge computing capabilities to be presented in the next subsection enables edge 
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processing of IoT data before transmission to a central system, enhancing responsiveness and reducing network 

congestion. 

This IoT testbed represents a scalable and modular framework suitable for smart office applications, energy 

efficiency research, and workplace analytics. By leveraging a combination of environmental sensors, edge 

computing, and smart automation technologies, it provides a robust infrastructure for studying and optimizing 

office environments. 

 
Figure 3. The IQU Offices IoT Data Source Domain that represents the IoT infrastructure of UC1. 

3.2.2.2 Edge Compute Testbed 

The Edge Compute Testbed for UC1 is hosted at IQU’s facilities and is designed to execute low-latency data 

processing using edge AI capabilities. It supports the deployment of UC1’s microservice-based applications and 

AC3 components through a K8s-based LMS. 

K8s Cluster Configuration 

The edge domain is structured as a K8s cluster with one master and three worker nodes as defined in Table 2. 

All nodes operate over a secure WireGuard overlay network for inter-node communication and connectivity with 

the data source domain. 

Table 2:  UC1 Edge K8s Cluster Details  

Node Role Hostname CPU Cores Memory Status 

Master Node ac3-master-vm Intel Xeon 
Gold 5218 

16 192 GB DDR4 Running 

Worker 

Node #1 

ac3-node-1-vm Intel Xeon 
Gold 5218 

16 192 GB DDR4 Running 

 

Worker 

Node #2 

ac3-node-2-vm 

 

Intel Xeon 
Gold 5218 

16 192 GB DDR4 Running 

 



 
D.5.2. Report on Integration the CECCM 

 
 

 

© AC3 2023  Page | 19  

Worker 

Node #3 

ac3-node-3-vm 

 

Intel Xeon 
Gold 5218 

16 192 GB DDR4 Running 

 

All nodes are deployed on a high-performance bare-metal server (S1) that was defined in D4.2 [2], section 5.1.4, 

and benefit from centralized storage via a ZFS-backed 2TB NVMe SSD for high-throughput data access. A second 

server (S2) specified in D4.2 [2] is also available in case more nodes need to be added to the cluster. It features 

an Intel i9-10900L CPU (10 cores / 20 threads) and a 2 TB NVMe SSD. 

LMS and Cluster Software Stack 

The edge domain LMS is powered by K8s, and the software stack includes: 

• K8s Version: v1.30.10 

• Container Runtime: containerd 

• Container Network Interface: Calico 

• Overlay Network: WireGuard (for secure inter-node communication) 

• Internal Monitoring Stack: Prometheus + Grafana (deployed on both edge and cloud domains) 

• Security: TLS encryption with Role-Based Access Control (RBAC) enforcement for K8s API access. 

This setup ensures that all edge domain services in UC1, such as microservices for sensor ingestion, ML model 

inference, and messaging, can be deployed and monitored. 

Network Setup: 

Figure 4 depicts the external-access architecture for the edge K8s cluster, where port forwarding securely 

exposes the K8s API server. Port 6443 is forwarded to the master node at 10.0.0.8:6443, enabling external access 

via IQU’s domain (dev.iquadrat.com:6443). RBAC enforces fine-grained permissions, and TLS certificates ensure 

all communication is encrypted and authenticated. 

 

 

Figure 4. Exposed Endpoints of the K8s Cluster API 

Furthermore, this configuration strengthens security and facilitates seamless integration and secure data 

exchange between the data source domain and the edge domain. This enhancement is made possible by the 

incorporation of the Raspberry Pi devices into the WireGuard overlay, which enables effective communication 

between these domains. 
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Figure 5. Architecture for Exposing the K8s API Server Through Domain-Level Port Forwarding 

3.2.2.3 Cloud Compute Testbed 

The Cloud Compute Testbed of UC1 operates using the same software tools as the Edge Compute Testbed. The 

computing infrastructure used is provided by IONOS as a virtual K8s deployment on its cloud resources to provide 

more computing capabilities than the edge location. 

3.3 Component Integration Design 

Multiple components developed in AC3 are integrated with the UC1 application to facilitate the demonstration 

of the AC3 features used, and their integration is depicted in Figure 6. In more detail: 

1. The data source of UC1 is registered in the AC3 Catalogue, and the EDC Connectors are used to retrieve 

the data from it (presented in green colour).  

2. The application’s resource usage metrics are exposed to the monitoring framework via the Prometheus 

collectors deployed (light yellow colour blocks) in both edge and cloud locations. These metrics will be 

used to train the ML models for the application profiling and migration to implement the intelligent 

Lifecycle Management. 

1. The UC1 application specific components (RabbitMQ, Mapper, ML and UI) are presented in orange colour 

and can be deployed either at the edge or cloud locations available. In the role of LCM, we have used 

LiSO from EUR. LiSO, which is described in D2.3 [6], is responsible for the deployment of the application 

as well as enforcing application runtime decisions based on the AI model recommendations based on 

the Application Descriptor (AppD) that is generated by the OSR. 

3. The computation LMS used in our UC is K8s. 
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Figure 6. UC1 / AC3 component integration 

The UC1 application definition and deployment are outlined in Figure 7. The process begins with the definition 

of the application services and the data needed through the AC3 GUI. The user can either retrieve and use services 

that are already defined in the Service Catalogue or define new services that are to be stored in the Service 

Catalogue to be re-used later on from other applications. The GUI also sends the application details to the App 

Gateway that will forward a request to the OSR in order to build a combined AppD that includes both the services 

of the application, as well as the datasets to be used and the data management application addons that are 
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needed for the application to work. The merged AppD will then be sent to the LCM and to the UC1 Testbed’s 

LMS for the final deployment. 

 

Figure 7. UC1 application definition and deployment 

The UC1 data processing workflow diagram is illustrated in Figure 8. IoT data updates are generated from the IoT 

Sensors and sent to the provider EDC Connector. The data transfer is initiated by the consumer EDC Connector 

with a process that will be further defined in Section 3.4.3. After this process is complete, the provider EDC 

Connector starts to forward Sensor Data updates to the Logger deployed as part of the UC1 application. The 

Logger then forwards them to the RabbitMQ broker, also deployed by UC1. From there, each data point is 

“mapped” from a dedicated service to an internal data triple that is then distributed to the data analysis 

components of our application (ML-1 for anomaly detection and ML-2 for value forecasting). The results from 

each ML model are again published to the RabbitMQ server as an analysis result. These results, as well as the 

original data, are also forwarded to and displayed in the UC1 UI (based on Grafana) to be made available to our 

application’s users.  
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Figure 8. UC1 Data Processing Pipeline 

3.4 Component Integration Status 

3.4.1 Data Management and Connectors 

The dataset of UC1 described in Figure 9Figure 9: UC1 Dataset consists of the data streams originating from the 
IQU testbed. It is registered in the catalogue following the Gaia-X principles for data sharing and interoperability, 
providing all the needed information about its data and its characteristics. It is also providing the asset ID “uc1-
stream”. This id is used through a dedicated data endpoint at http://ds.uc1.ac3.sparkworks.net:18182/protocol, 
using the "dspaceconnector" protocol for communication to get access to the stream of data. 

To access and utilize the dataset, specific services and connectors are required, as listed in the ACᶾ catalogue 

(they will be described in the next subsection): 

• A required connector is linked, which serves as an intermediary for secure data exchange. 

• Additional service offerings are also linked, ensuring that the dataset can be processed, analysed, and 

integrated in our application. 

The dataset is governed by the BSD-3-Clause license, which allows for redistribution and modification with 

minimal restrictions, making it suitable for both academic and commercial applications. Two contact points are 

also available for additional information and requests from the two consortium members that curate the data 

source. 

@prefix dc: <http://purl.org/dc/terms/> . 
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . 
@prefix dcat: <http://www.w3.org/ns/dcat#> . 
@prefix ns0: <https://ac3-project.eu/#> . 
@prefix ns1: <https://schema.org/> . 
@prefix ns2: <https://w3id.org/gaia-x/development#> . 
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> . 
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<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-e2354baae959> 
  a <https://w3id.org/gaia-x/development#Dataset> ; 
  dc:title "UC1 Dataset 1"@en ; 
  geo:lat 41.3976242 ; 
  geo:long 2.1560832 ; 
  dcat:assetId "uc1-stream" ; 
  dcat:contactPoint <https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-
4e5d-a216-e2354baae959/Contact1>, <https://catalogue.ac3-
project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-e2354baae959/Contact2> ; 
  dcat:endpointDescription "dspaceconnector" ; 
  dcat:endpointURL "http://ds.uc1.ac3.sparkworks.net:18182/protocol" ; 
  ns0:requiredConnector <https://catalogue.ac3-project.eu/set/resource/service/10333e33-
0875-4869-9f15-7fc7fccd1d48> ; 
  ns0:requiredServiceOffering <https://catalogue.ac3-
project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fb3>, 
<https://catalogue.ac3-project.eu/set/resource/service/5b6372e6-11a0-47dc-8b1c-
761ff81cba25>, <https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-
9518-efb9f55d3f73> ; 
  ns1:description "These data are used in the UC1 of the AC3 project. UC1 focuses on 
processing and analysing streams of data originating from environmental sensors installed 
inside office or residential buildings." ; 
  ns1:name "IQU UC1 IoT Data 1" ; 
  ns2:license "BSD-3-Clause" . 
 
<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-
e2354baae959/Contact1> 
  a vcard:Kind ; 
  vcard:fn "Iquadrat Informatica S.L." ; 
  vcard:hasEmail <mailto:j.ojeda@iquadrat.com> ; 
  vcard:hasName "Jhofre Ojeda" . 
 
<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-
e2354baae959/Contact2> 
  a vcard:Kind ; 
  vcard:fn "Spark Works Ltd." ; 
  vcard:hasEmail <mailto:tsaradakos@sparkworks.net> ; 
  vcard:hasName "Themistoklis Sarantakos" . 

Figure 9: UC1 Dataset 

3.4.2 Service Catalogue 

In the AC3 Service Catalogue, we have defined a number of services that are designed to retrieve and process the 

data generated by the data source of UC1. These are the: 

• UC1 Connector, based on the EDC Connector, 

• UC1 Logger for incoming data to receive new IoT measurements, 

• UC1 Data Mapper to prepare IoT measurements for processing by the IoT application. 

In the rest of this Section, we will present the descriptions of these services and justify their properties. 

Starting with the UC1 Connector, presented in Figure 10, we have the definition of a service based on the 

“sparkworks/ac3-connector-http-http-consumer:latest” docker image published in the official Docker Hub. This 

application needs a set of environmental variables to be configured and executed, as well as needs to expose a 
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set of TCP ports to facilitate communication with the data provider Connector. Regarding the environmental 

variables, it needs to get access to the following data: 

• Ports to be used for the loaded services. These ports are provided as numerical values. 

• PROVIDER_DOMAIN: Domain of the data source provider where the connector should send its requests 

to. This domain is provided as a value that the OSR will replace when building the application’s descriptor. 

• ASSET_NAME: The name of the asset to be requested from the data source connector. This value is 

provided as a value that the OSR will replace when building the application’s descriptor. 

• CONSUMER_DOMAIN: The domain where this application will be launched and become accessible on 

the public internet. This domain is provided as a value that the OSR will replace when building the 

application’s descriptor. 

Additionally, in the service’s description we include a set of resource limits that are to be used when launching 

the service to make sure that the application will fit in the resources available in the deployment environment. 

The resource limits include CPU, Memory and GPU requirements and are based on the Gaia-X ontology’s 

ContainerResourceLimits. Similarly, an SLA entity is added to define SLAs for the service that AC3 should apply. 

These values include serviceAvailability, maxResponseTime and dataThroughput. 

@prefix dc: <http://purl.org/dc/terms/> . 
@prefix ns0: <https://ac3-project.eu/#> . 
@prefix ns1: <https://schema.org/> . 
@prefix ns2: <https://w3id.org/gaia-x/development#> . 
 
<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-7fc7fccd1d48> 
  a <https://w3id.org/gaia-x/development#ServiceOffering> ; 
  dc:title "Streaming IoT Connector" ; 
  ns0:EnvironmentVariable "WEB_HTTP_MANAGEMENT_PORT=28181", "WEB_HTTP_PORT=28180", 
"WEB_HTTP_PROTOCOL_PORT=28182", "WEB_BASE_URL=http://192.168.1.215", 
"WEB_HTTP_CONTROL_PORT=28183", "ASSET_NAME=@dcat:assetId", 
"PROVIDER_DOMAIN=@dcat:endpointURL", "CONSUMER_DOMAIN=@self-ip" ; 
  ns0:ExposedPort "28180:28180", "28181:28181", "28182:28182", "28183:28183" ; 
  ns0:image "sparkworks/ac3-connector-http-http-consumer:latest" ; 
  ns1:description "This is an edc connector for streaming iot data" ; 
  ns1:name "streaming-connector" . 
 
<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-
7fc7fccd1d48/resourceLimits> 
  a <https://w3id.org/gaia-x/development#ContainerResourceLimits> ; 
  ns2:cpuRequirements 0.5 ; 
  ns2:memoryRequirements 512 ; 
  ns2:gpuRequirements 0 . 
 
<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-
7fc7fccd1d48/sla> 
  a ns0:microservicesSLA ; 
  ns0:serviceAvailability 99.9 ; 
  ns0:maxResponseTime "Medium" ; 
  ns0:dataThroughput "High" . 

Figure 10. UC1 Connector 
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The UC1 Logger (Figure 11) is based on the “sparkworks/ac3-amqp-http-request-logger:latest” Docker image, 

which is published in Docker Hub. This application requires minimal configuration, primarily setting up network 

ports for communication. Additionally, in the service’s description, we include a set of resource limits that are to 

be used when launching the service to make sure that the application will fit in the resources available in the 

deployment environment. The resource limits include CPU, Memory, and GPU requirements and are based on 

the Gaia-X ontology’s ContainerResourceLimits. Similarly, an SLA entity is added to define SLAs for the service 

that AC3 should apply. These values include serviceAvailability, maxResponseTime and dataThroughput. 

 

@prefix dc: <http://purl.org/dc/terms/> . 
@prefix ns0: <https://ac3-project.eu/#> . 
@prefix ns1: <https://schema.org/> . 
@prefix ns2: <https://w3id.org/gaia-x/development#> . 
 
<https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fb3> 
  a <https://w3id.org/gaia-x/development#ServiceOffering> ; 
  dc:title "Streaming IoT Logger" ; 
  ns0:EnvironmentVariable "HTTP_SERVER_PORT=4000" ; 
  ns0:ExposedPort "4000:4000" ; 
  ns0:image "sparkworks/ac3-amqp-http-request-logger:latest" ; 
  ns1:description "This is a receiver for streaming iot data" ; 
  ns2:ContainerResourceLimits <https://catalogue.ac3-
project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fb3/resourceLimits> ; 
  ns0:microservicesSLA <https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-
48ec-90cd-d4a229736fb3/sla> ; 
  ns1:name "streaming-logger" . 
 
<https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-
d4a229736fb3/resourceLimits> 
  a ns2:ContainerResourceLimits ; 
  ns2:cpuRequirements 1 ; 
  ns2:memoryRequirements 1024 ; 
  ns2:gpuRequirements 0 . 
 
<https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-
d4a229736fb3/sla> 
  a ns0:microservicesSLA ; 
  ns0:serviceAvailability 99.9 ; 
  ns0:maxResponseTime "Medium" ; 
  ns0:dataThroughput "High" . 

Figure 11. UC1 Logger 

For the UC1 mapper (Figure 12), we define a service based on the “sparkworks/sw-mapper-ac3:0.5” Docker 

image, published in the official Docker Hub. This application requires a set of environmental variables to be 

configured and executed, as well as the exposure of a set of TCP ports to facilitate communication with the 

message broker and other services. Regarding environmental variables, the service requires the following data: 

• RABBITMQ_HOST: Specifies the RabbitMQ message broker host. 

• RABBITMQ_PORT: Defines the port for RabbitMQ communication. 

• RABBITMQ_USERNAME: Username used for authentication. 
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• RABBITMQ_PASSWORD: Password for authentication. 

• QUEUE_IN: The input queue name where incoming data is received. 

• QUEUE_OUT: The output queue name where mapped data is sent. 

Additionally, in the service’s description we include a set of resource limits that are to be used when launching 

the service to make sure that the application will fit in the resources available in the deployment environment. 

The resource limits include CPU, Memory and GPU requirements and are based on the Gaia-X ontology’s 

ContainerResourceLimits. Similarly, an SLA entity is added to define SLAs for the service that AC3 should apply. 

These values include serviceAvailability, maxResponseTime and dataThroughput. 

@prefix dc: <http://purl.org/dc/terms/> . 
@prefix ns0: <https://ac3-project.eu/#> . 
@prefix ns1: <https://schema.org/> . 
@prefix ns2: <https://w3id.org/gaia-x/development#> . 
 
<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73> 
  a <https://w3id.org/gaia-x/development#ServiceOffering> ; 
  dc:title "Mapper Service" ; 
  ns0:EnvironmentVariable "RABBITMQ_HOST=edgebroker", "RABBITMQ_PASSWORD=xyzpass", 
"RABBITMQ_USERNAME=mapperuc1", "RABBITMQ_PORT=5672", "QUEUE_OUT=mapperuc1.mapped", 
"QUEUE_IN=mapperuc1.data" ; 
  ns0:ExposedPort "5026:5026", "8026:8026" ; 
  ns0:image "sparkworks/sw-mapper-ac3:0.5" ; 
  ns1:description "This is a mapper service for live IoT data." ; 
  ns1:name "edgemapper" . 
 
<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73/resourceLimits> 
  a <https://w3id.org/gaia-x/development#ContainerResourceLimits> ; 
  ns2:cpuRequirements 0.5 ; 
  ns2:memoryRequirements 512 ; 
  ns2:gpuRequirements 0 . 
 
<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73/sla> 
  a ns0:microservicesSLA ; 
  ns0:serviceAvailability 99.9 ; 
  ns0:maxResponseTime "Medium" ; 
  ns0:dataThroughput "High" . 

Figure 12. UC1 Mapper 

3.4.3 Data Source Deployment 

The Data Source of UC1 is interfaced with AC3 using an EDC Connector developed based on the Eclipse EDC 
connector samples. This provider connector is deployed as a containerized application at the testbed’s 
infrastructure and is interfaced with the locally running MQTT broker that aggregates the data generated by the 
IoT devices. Once the connector is deployed, a new asset is registered using a set of parameters that define the 
source of the incoming IoT updates (MQTT server host, port, username, password, and topic), and the ID of the 
asset that will be used for this source. This can be accessed then through the provider’s management API: 
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{ 
  "@context": {"@vocab": https://w3id.org/edc/v0.0.1/ns/}, 
  "@id": "uc1-stream", 
  "properties": { 
     "name": "iot-data", 
     "type": "streaming", 
   } 
} 

A policy must then be defined on the provider side to govern access to UC1 data. A JSON payload is used to 
define a policy that permits the usage of the asset: 

{ 
  "@context": { 
    "edc": "https://w3id.org/edc/v0.0.1/ns/", 
    "odrl": "http://www.w3.org/ns/odrl/2/" 
  }, 
  "@id": "no-constraint--1", 
  "policy": { 
    "@type": "odrl:Set", 
    "odrl:assigner": { 
      "@id": "provider" 
    }, 
    "odrl:target": { 
      "@id": "asset-1" 
    }, 
    "odrl:permission": [], 
    "odrl:prohibition": [], 
    "odrl:obligation": [] 
  } 
} 

Next, a contract definition is created to govern the data transfer. A JSON payload is used to define the contract 
terms, linking the asset to a policy that permits access: 

{ 
   "@context": { 
     "edc": "https://w3id.org/edc/v0.0.1/ns/" 
   }, 
   "@id": "contract-definition", 
   "accessPolicyId": "no-constraint-policy", 
   "contractPolicyId": "no-constraint-policy" 

 } 

The consumer connector then needs to initiate the negotiation of the data transfer to the UC1 AC3 application. 

This is achieved using a request payload for the specific asset: 

{ 
  "@context": { 
    "@vocab": "https://w3id.org/edc/v0.0.1/ns/", 
    "odrl": "http://www.w3.org/ns/odrl/2/" 
  }, 
  "@type": "NegotiationInitiateRequest", 
  "counterPartyAddress": "http://ds.uc1.ac3.sparkworks.net:8282/protocol", 

https://w3id.org/edc/v0.0.1/ns/
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
https://w3id.org/edc/v0.0.1/ns/
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://ds.uc1.ac3.sparkworks.net:8282/protocol
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  "protocol": "dataspace-protocol-http", 
  "offer": { 
    "offerId": "..." 
  }, 
  "policy": { 
    "@id": "", 
    "@type": "odrl:Offer", 
    "odrl:assigner": {"@id": "provider"}, 
    "odrl:target": {"@id": "uc1-stream"}, 
    "odrl:permission": [], 
    "odrl:prohibition": [], 
    "odrl:obligation": [] 
  } 
} 

Once the negotiation is finalized (status FINALIZED), the response provides a contract agreement ID, which is 

used to initiate the data transfer. A JSON payload is used to initiate the data transfer through the consumer’s 

management API: 

{ 
    "@context": { 
        "edc": "https://w3id.org/edc/v0.0.1/ns/" 
    }, 
    "@type": "TransferRequest", 
    "connectorId": "provider", 
    "counterPartyAddress": "http://ds.uc1.ac3.sparkworks.net:8282/protocol", 
    "protocol": "dataspace-protocol-http", 
    "contractId": "...", 
    "assetId": "uc1-stream", 
    "transferType": "HttpData-PUSH", 
    "dataDestination": { 
        "type": "HttpData", 
        "baseUrl": "http://ionos-s1.sparkworks.net:4000" 
    } 
} 

Once the transfer process is initiated, the data starts flowing to the baseUrl provided in the request noted above. 

The logger application that is executed there is capable of decoding the received data and forwarding it to the 

AC3 application for further processing. 

3.4.4 Application Descriptor – OSR 

The Graphical User Interface (GUI) and Ontology Semantic Reasoner (OSR) have been successfully integrated to 

support the definition, composition, and deployment of applications within UC1. This integration allows 

developers to define their application requirements through a structured and intuitive GUI, while the OSR 

automates the translation of these inputs into a machine-readable YAML-based AppD. This mechanism ensures 

that the required configurations, inter-service dependencies, and deployment parameters are correctly 

structured and semantically validated. 

The snippets below present a high-level structure of the AppD, which includes metadata, microservices 

configuration, network interconnections, global SLA requirements, and deployment constraints. This structure is 

generated automatically based on the user input, ensuring both flexibility and compliance with deployment 

expectations. 

https://w3id.org/edc/v0.0.1/ns/
http://ds.uc1.ac3.sparkworks.net:8282/protocol
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To demonstrate how microservices are defined in practice, the code snippets below provide an example 
microservice from UC1, detailing its resource requirements, environment variables, SLA targets, and port 
mappings. This structure ensures that each service is configured accurately to match deployment conditions, 
including location-specific constraints (e.g., edge or cloud). 

In scenarios where data sources are involved, like UC1, the OSR queries the Piveau catalogue to fetch relevant 

services and connectors. The following snippets illustrate an example of a microservice automatically extracted 

from Piveau. These data-related services are appended to the descriptor to ensure the application can access 

and process data as expected. 

This end-to-end flow streamlines the deployment process across the Cloud-Edge Continuum (CECC), reducing 

manual overhead while supporting flexible, scalable application design. 

ApplicationName: "UC1 IoT Data Processing"  
Version: "3.0"  

   
Microservices_configuration:  

   
Global_SLA:  

ServiceAvailability: "99.9%"  
MaxLatency: "500 ms"  
MaxResponseTime: "Low"  
DataThroughput: "High" 

 

Microservices_configuration:  

MicroserviceName: "edgeapplication"   
Version: "0.4"   
Image: "sparkworks/data_manipulator_uc1:0.4"   
ID: "edgeapplication"   
ResourceRequirements:   

Cpu: "4 vCPUs"   
Memory: "8Gi"   

ReplicaCount: "1"   
Ports:  

"5001:5001"   
EnvironmentVariables:  

Name: "RABBITMQ_PORT" Value: "5672"  
Name: "RABBITMQ_HOST" Value: "edgebroker"  
Name: "RABBITMQ_USERNAME" Value: "m1"  
Name: "RABBITMQ_PASSWORD" Value: "7Iqk7uu1Ot"  
Name: "QUEUE_OUT" Value: "mapperuc1.processed.ml"  
Name: "QUEUE_IN" Value: "mapperuc1.mapped.ml" 
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Microservices_configuration: 

- MicroserviceName: "consumer"  
    Version: "latest"  
    Image: "sparkworks/ac3-connector-http-http-consumer:latest"  
    ID: "consumer"  
    Ports:  
      - "28180:28180"  
      - "28181:28181"  
      - "28182:28182"  
      - "28183:28183"  
    EnvironmentVariables:  
      - Name: "WEB_BASE_URL"  
        Value: "http://ionos-s1.sparkworks.net"  
      - Name: "WEB_HTTP_PORT"  
        Value: "28180"  
      - Name: "WEB_HTTP_MANAGEMENT_PORT"  
        Value: "28181"  
      - Name: "WEB_HTTP_PROTOCOL_PORT"  
        Value: "28182"  
      - Name: "WEB_HTTP_CONTROL_PORT"  
        Value: "28183"  
      - Name: "ASSET_NAME"  
        Value: "uc1-stream"  
      - Name: "PROVIDER_DOMAIN"  
        Value: http://ds.uc1.ac3.sparkworks.net:18182/protocol 

 

3.4.5 LCM 

The UC1 integrates Eurecom's Lightweight Edge Slice Orchestration (LiSO) component to efficiently manage the 

lifecycle of its dynamic, container-based applications, along with the robust Cloud Edge Continuum 

infrastructure. This strategic decision not only strengthens the orchestration framework already established in 

UC2 but also facilitates a seamless integration of processes and encourages the reusability of resources across a 

wide range of UCs within the AC3 architecture.  

3.4.5.1 Application Deployment 

LiSO consists of two primary orchestration layers and an image registry, as defined in D2.3 [6]. It is integrated 

into UC1, as depicted in Figure 13 which illustrates a simplified architecture of UC1 to highlight the LCM 

integration: 

• The Service Orchestration Layer  [6] from LiSO is responsible for translating the UC1 AppD generated by 

the OSR into Resource Level Objects (RLOs) such as K8s deployment specifications or helm charts. This 

translation is a crucial step that enables the seamless deployment of the UC1 microservice-based 

application on the edge or cloud LMS. By effectively transforming the AppD into RLOs, LiSO ensures that 

the application can fully utilize the resources available in the Cloud Edge Continuum. 

• Resource Orchestration Layer (ROL) interfaces directly with the edge and cloud K8s LMS using a plugin 

mechanism through the LMS northbound interface (NBI), executing resource-level operations such as 

deployment, scaling, and termination. 

http://ionos-s1.sparkworks.net/
http://ds.uc1.ac3.sparkworks.net:18182/protocol
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• Since LiSO fetches and stores container images specified via URLs in the AppD/VNFD files for seamless 

service deployment, a Container Image Registry is deployed in the Edge Domain as shown in Figure 13: 

Overview of UC1 Architecture, highlighting the integration of LiSO's orchestration layers and image 

registry. 

 

Figure 13: Overview of UC1 Architecture, highlighting the integration of LiSO's orchestration layers and image registry 

Note that more details are given in section 4.3.3 about the integration of LiSO with OSR. 
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3.4.5.2 Application Adaptation 

As part of our Application Adaptation process, UC1’s LMS must seamlessly join the AC³ architecture. To achieve 

this, we leverage Eurecom’s LiSO architecture, its ROL component allows the LMS to register asynchronously in 

a collaborative, multi-stakeholder environment. Figure 13 illustrates how ROL interacts directly with the 

northbound interface (NBI) of edge domain, enabling the LMS to adapt and integrate dynamically into the overall 

continuum. 

In UC1, the LMS is implemented using K8s, the industry-standard platform for container orchestration. This setup 

enables efficient resource management and microservice deployment at the edge and cloud domains in UC1. 

K8s oversees both computing resources and the lifecycle of services within the edge domain, ensuring high 

availability and fault tolerance. 

The LMS in UC1 is responsible for orchestrating and running containerized applications dynamically based on 

local resource availability and workload demands. By using K8s, UC1 can take advantage of K8s robust 

orchestration features, such as automatic scaling, self-healing (i.e., auto-restarting failed containers), and 

resource-based scheduling to optimize local edge domain operations. 

The edge and cloud LMSs work closely with the LiSO LCM, which in turn interacts with the OSR component to 

obtain AppDs and utilize the instructions to deploy microservices. This setup facilitates the deployment of 

applications using these AppDs which is a key output of the User Plane. 

This integration significantly enhances the system's capacity to speed up and adapt swiftly to evolving workload 

demands, a vital feature for UC1, particularly in scenarios such as real-time environmental data processing and 

occupancy detection. Consequently, this advancement enhances overall efficiency and facilitates real-time 

execution and processing within UC1. 

3.4.5.3 Migration Algorithm 

One of the key components enhancing the architecture is the migration block, which should be integrated into 

the LiSO LCM (as shown in Figure 13). The migration module continuously monitors cloud-edge computing 

resources to identify hidden patterns that can optimize service allocation between cloud and edge servers. It is 

powered by a reinforcement learning (RL) algorithm introduced in Section 5.2 of D3.2. 

Following the initial service placement, the migration module proposes resource reallocations to ensure the 

application's latency requirements are maintained, especially when resource utilization begins to degrade. By 

leveraging real-time data on computing resources at both the cloud and edge levels, along with network latency 

metrics, the migration block drives its decisions. The RL algorithm learns and adapts to select the most suitable 

server for migration, ensuring consistently low latency performance. 

3.4.5.4 AI-based LCM and Decision Enforcement Algorithms 

As part of the AC3 integration strategy, UC1 incorporates Zero-touch configuration and application management 

capabilities. The approach is built upon specifically the work initiated in Sections 5.3.2 and 5.3.3 of D4.1 [4] based 

on the two distinct XAI-enabled algorithms developed in WP4. These algorithms can offer UC1 predictive and 
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explainable decision-making capabilities, enabling detailed resource control, proactive scaling, and SLA 

preservation. 

XAI-Enabled Fine Granular Resources Autoscaler 

This algorithm provides a fine-grained vertical autoscaling mechanism for the UC1 application. It leverages 

eXplainable AI (XAI) techniques to analyze resource usage trends in relation to their limits and predict when 

resources should be adjusted to maintain performance. 

The most relevant elements to be integrated into UC1 are: (1) an ML predictor based on XGBoost to detect 

potential QoS degradation by analyzing CPU and memory usage patterns; (2) an explainability module using SHAP 

to identify the most influential resource metrics contributing to performance issues; and (3) a decision Engine 

that leverages SHAP insights to trigger targeted, fine-grained vertical scaling actions (CPU, memory, or both), 

ensuring efficient resource utilization and SLA compliance. 

The following outlines several key benefits: 

• Explainability: Operators understand why decisions are made. 

• Efficiency: Resources are scaled only when and where needed. 

• Zero-touch: Autonomous operations reduce human intervention. 

XAI for Prediction of Infrastructure Usage 

This strategy may be incorporated into UC1 to accurately predict future resource utilization (CPU, memory) at 

the infrastructure level, facilitating proactive and optimized management decisions through clear and 

understandable AI models. 

The aim of integrating this algorithm is to reach the following benefits: 

• Reduces system downtime or degraded performance by anticipating overload scenarios. 

• Enables resource-aware scheduling, improving overall edge efficiency. 

 

3.5 Remaining Integration 

Working on the next steps of UC1, we can summarize them in the following: 

• Deployment of the UC1 cloud computing location. This is needed for the evaluation of the “Seamless 

Microservice Deployment and Migration” and the “Time to process and react to sensor data” scenarios. 

The process will follow a similar approach to the one followed in our edge deployment, with a K8s 

installation orchestrated using the same tools. The main difference would be the extra resources made 

available for our installation, as it would be capable of processing larger volumes of data. 

• Deployment of edge and cloud computing location monitoring applications. This is needed for the 

“Seamless Microservice Deployment and Migration” and “AI-powered Infrastructure Monitoring & 

Control Service at the Edge” scenarios. Using the monitoring information, the CECCM would be able to 

decide when and what type of migration is needed between the cloud and edge compute locations. 

• Comparative analysis of the behavior of the UC1 application in the two testbed locations. This is part of 

the “Time to process and react to sensor data”. Once we can deploy our application at both locations, 

we will be able to assess how much data each location can process and handle, and what the benefits 



 
D.5.2. Report on Integration the CECCM 

 
 

 

© AC3 2023  Page | 35  

are from moving the computation closer to the data sources of our application, instead of transferring 

them to the cloud. 

• Evaluate the deployment of the UC1 application to the edge and cloud locations of our testbed. This is 

part of the “Zero-touch configuration, application management, and data management”, allowing us to 

understand how much easier the process of deploying our application is. 

 

3.6 UC1 Integration summary 

The table below offers an overview of the integration status for UC1. It summarizes the key components and 

their progress, highlighting both the advancements made and the areas still in development. 

Architecture component   Sub-Component   Description   Integration status  

Application gateway (GUI)     

Allow the application 
developer to define its 
application components 
and SLA.    

 In Progress 

OSR    
Allow the generation of 
the AppD  

 In Progress 

LMS Edge     

We will execute the micro-
services that run at the 
network's edge for lower 
latency and bandwidth 
optimisation.  

 In Progress 

LMS Cloud     

Will execute the micro-
services that cannot run at 
the network's edge due to 
high resource usage or 
data volumes, and latency 
is not a constraint. 
Similarly, for network 
unavailability at the edge.  

 In Progress  

Catalogues    
Hosts the component 
templates for the 
application  

  Complete 

Application and resource 
management   

AI-based LCM and 
Decision Enforcement  

1. Manage the 
microservices Life Cycle  
2. Migration algorithm 
that adapts if the edge 
resource degrades or 
moves to the edge a 
micro-service  

1. In progress 

2. In progress 

Zero-touch configuration 
and application 
management, data 
management  
  

Predict and describe 
infrastructure resources 
and implement automated 
corrective measures.  
  

 Not started 
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AI-Based Resource profile   
Describe the resources of 
the infrastructure  

 Not started 

AI-Based Application 
profile   

Predicting Application 
Behaviour  

 Not started 

Monitoring   
Monitoring the micro-
services KPI   

 Not started 

Data Management  

Catalogues  
Provides descriptions for 
the available data sources  

 Complete 

Data Provider Connector  
Provides access to the 
data made available  

 Complete 

Data Consumer Connector  

Initiates the streaming of 
data from the data source 
to the application micro-
services  

 Complete 

Data Mappers  
Transforms incoming data 
as needed  

 Complete 

Data Manipulator  Core application logic   Complete 

Message Broker  
Responsible for 
transferring data between 
application components  

 Complete 

Table 3: UC1 Integration summary 

This summary aims to provide a clear snapshot of the current integration status and the steps taken toward the 

full integration of the UC within the project. 
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4 UC2  
4.1 Use Case Description  

UC2 focuses on the deployment of a sophisticated Smart Monitoring System designed to enhance urban security, 

traffic management, and environmental surveillance. This system integrates UAVs, IoT technologies, AI/ML 

algorithms, and edge computing to enable intelligent, responsive, and efficient monitoring capabilities within a 

smart city context. 

UC2 demonstrates how real-time data from UAV-mounted cameras and distributed IoT sensors can be processed 

using edge computing resources and analysed through AI-driven techniques. The CECCM plays a central role in 

managing this distributed infrastructure, enabling the seamless execution of surveillance and monitoring 

applications across the cloud-edge continuum. The system supports both live video streaming and video-on-

demand (VoD) functionalities, with the ability to store video footage for further analysis and insights generation. 

Ultimately, UC2 exemplifies a powerful integration of technologies to support data-driven decision-making for 

urban environments. 

4.1.1 Use Case Objectives 

The objectives of UC2 align closely with the goals of the AC³ framework, focusing on flexible deployment, 

intelligent processing at the edge, and automated management of microservice-based applications. The key 

objectives include: 

• Simplified Application Definition: Use the GUI and OSR to define, manage, and deploy microservice-

based applications easily. 

• Zero-Touch Management and Orchestration: Leverage CECCM for autonomous configuration, life-cycle 

management, and microservice orchestration using AI/ML. 

• Flexible Behaviour Reconfiguration: Dynamically switch between functionalities like object tracking, 

activity detection, and surveillance using semantic requests. 

• Resilient Microservice Deployment: Enable optimal placement and seamless migration of services across 

UAVs and edge nodes in response to resource availability. 

• Edge Intelligence and Analytics: Run AI models (e.g., Deepstream, YOLO) on UAVs and edge devices for 

real-time object detection, behaviour analysis, and traffic monitoring. 

• Environmental Monitoring and Response: Use UAV-mounted IoT sensors for real-time tracking of 

conditions such as CO₂ and temperature. 

• Scalable and Adaptive Operations: Automatically manage workloads and scale services across distributed 

cloud-edge resources to meet changing demands. 

4.1.2 UC2 Stakeholders 

4.1.2.1 Users / System Administrators 

The primary users of the deployed UC2 application include stakeholders responsible for urban surveillance and 

public safety. These users include building security personnel in residential complexes (e.g., flat surveillance 

teams), municipal surveillance operators, and city infrastructure monitoring units. In cases of unusual events or 

security alerts, law enforcement agencies such as the police may also access the system to review live video 
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feeds or retrieve evidence from stored footage. These stakeholders rely on the system for configuring edge 

devices, viewing live streams, receiving real-time alerts, and analysing labelled video or sensor data to ensure 

situational awareness and rapid response. 

4.1.2.2 Application Developers / DevOps 

Application developers are responsible for defining and building the microservices required for UC2 surveillance 

tasks, such as video streaming, object detection, and telemetry analysis. Using the CECCM’s GUI, they define 

AppD’s that specify service components, resource needs, and deployment policies. The DevOps team handles 

the deployment process, leveraging the CECCM’s LCM system to orchestrate service placement across cloud, 

edge, and far-edge nodes. This reduces manual deployment effort and ensures high availability and scalability 

through automated lifecycle management, including service migration and fault tolerance. 

4.1.2.3 Infrastructure Provider 

The infrastructure provider supplies and maintains the CECCM platform used in UC2. This includes the setup and 

integration of core components such as the GUI, OSR, LCM, and LMS across cloud and edge environments. The 

provider ensures that these components are fully operational and compatible with K8s, K3s, and SD-WAN 

networking technologies, enabling seamless deployment and orchestration of microservices for the application 

developers and DevOps teams. 

4.2 Use Case Architecture 

The architecture of UC2 is designed to support AI-driven video surveillance by leveraging the AC³ framework. It 

integrates UAV-mounted and stationary IoT devices with microservice-based video analytics components, 

orchestrated through the AC³ framework. The system enables distributed processing and real-time insights 

across far-edge, edge, and cloud environments. The architecture follows a modular and scalable approach, 

relying on containerized services managed by K8s-based orchestration layers and interconnected through SD-

WAN to ensure seamless communication and deployment flexibility. 

4.2.1 Use Case Application 

The architecture of UC2 involves a smart monitoring system built on UAVs, IoT devices, and video analytics using 

AI at the edge. The core components include a system administrator interface, edge devices (Raspberry Pi and 

Nvidia Jetson), a video analytics system powered by DeepStream and ML, and the AC³ framework. The 

administrator interface allows configuration and control of edge devices, including monitoring live streams, 

receiving real-time alerts, and viewing segmented images for telemetry analysis. Through this interface, system 

administrators interact with the system’s frontend, backend, and analytics microservices, performing actions like 

adding or deactivating devices. 

 At the far edge, UAVs are equipped with Nvidia Jetson devices for on-device video analysis and AI processing, 

while Raspberry Pi units handle streaming without analytics capabilities. The video analytics system uses 

DeepStream and YOLO for real-time object detection and activity recognition, supporting both live and VoD 

functionalities. The AC³ framework orchestrates the infrastructure, managing computing resources across the 

cloud-edge continuum. It enables service relocation, fault tolerance, and latency reduction through AI-based 

orchestration and lifecycle management of microservices. Figure 14 illustrates this setup, where video processing 

is efficiently managed across a central server, regional edge servers, and far-edge devices deployed in the parking 

lot. 
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4.2.1.1 Application Components 

The UC2 application is composed of multiple microservices deployed across a distributed infrastructure that 

includes cloud, edge, and far-edge nodes. These services are containerized and managed using K8s and K3s for 

scalability and orchestration. The central server is the key component responsible for handling CRUD operations 

related to users, devices, and regions, with data persistence handled via an SQL database such as PostgreSQL. It 

serves the frontend API, which allows users and administrators to register devices, launch video streams, upload 

videos, and query telemetry data. 

The system also includes a regional server that manages IoT devices and cameras within designated areas. This 

server operates as a reverse proxy and performs local video processing using Nvidia DeepStream. It plays a critical 

role in enabling federated learning, where models deployed on regional servers and IoT devices are aggregated 

into a global model maintained at the central server. 

 At the far edge, UAVs are equipped with Nvidia Jetson devices capable of performing on-device AI and real-time 

video analytics, while Raspberry Pi units are limited to video streaming due to lower processing capabilities. 

Microservices requiring high computing resources or low latency are placed on the LMS Edge using the K8s API, 

while those with lightweight requirements, such as video capture and object detection, are deployed on UAVs 

using K3s. Frontend services are hosted on the LMS Cloud (IONOS Cloud), and the networking between these 

distributed nodes is managed by an SD-WAN controller. 

 

Figure 14. Architecture of the video surveillance and environmental monitoring system, illustrating data processing 

across central servers, regional edge nodes, and far-edge devices in an urban parking lot. 
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4.2.1.2 Component Interaction 

The interaction between microservices in UC2 follows a structured flow orchestrated by the AC³ framework. The 

process begins with the application developer, who uses a GUI to define the application components, their 

interdependencies, and SLA requirements. This information is submitted in the form of an AppD, which is then 

processed by the OSR. The OSR interprets the semantics of the descriptor, validates dependencies, and ensures 

policy compliance before handing it over to the LCM. 

The LCM coordinates the deployment of services to the appropriate infrastructure layer—cloud, edge, or far 

edge—based on available resources and runtime policies. It manages the full lifecycle of microservices, including 

initial placement, scaling, migration, and failure recovery. To interconnect the distributed computing nodes, the 

LCM uses the SD-WAN controller through its NBI to establish flow configurations and ensure seamless 

communication across the continuum. Monitoring tools are integrated to track microservice KPIs, while AI-based 

algorithms are used for placement decisions and predicting application and infrastructure behavior. For example, 

if a far-edge node’s resources degrade, the system can trigger a migration to maintain service continuity. 

The communication between distributed components is facilitated by LMS Networking via the SD-WAN 

controller, which enables connectivity across cloud, edge, and far-edge clusters. This setup ensures that services 

can interact reliably despite dynamic resource conditions. Metadata from object detection, sensor readings, and 

activity analysis is processed and fused across these layers, allowing administrators and users to access real-time 

insights via the frontend API. Access control is enforced by a dedicated authorization service, ensuring that only 

permitted users can interact with specific components or data streams. 

4.2.2 UC Testbed – Hardware and Software 

As previously mentioned, the UC2 application is based on a microservices architecture and will be deployed 

across a multi-cluster environment connected between them using SD-WAN. In this section, we describe the 

hardware and software setup of the testbed used for this deployment. The whole picture is presented in Figure 

15. The testbed spans two geographically distinct locations: the IONOS cloud data centre located in Germany, 

and EURECOM's edge and far-edge infrastructure located in France. 

4.2.2.1 Infrastructure Details 

IONOS Region 

The IONOS infrastructure consists of three main clusters and is built on machines with 32 GB of RAM, 16 CPU 

cores, and approximately 120 GB of HDD storage. All nodes run Ubuntu 22.04 as the operating system. 

• Management Cluster: 

o This is a single-node cluster with 4 CPU cores, 8 GB of RAM, and 20 GB of HDD storage. It runs a 

vanilla K8s setup and is dedicated to hosting core management software such as the AI-based 

LCM (LiSO, in this UC) and the SD-WAN controller. 

• SD-WAN Edge Cluster: 

o Also, a single-node setup, this cluster has 4 CPU cores, 8 GB of RAM, and 20 GB of HDD storage. 

It runs the SD-WAN edge component, enabling connectivity between the cloud cluster and other 

infrastructure setups. 
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• Cloud Cluster: This is a two-node cluster 

o Control Plane Node: Equipped with 4 CPU cores, 8 GB of RAM, and 64 GB of HDD storage, this 

node hosts core K8s components (such as the API server) along with AC3 components like the 

K8s LMS and the VIM adaptation agent. A local DNS server is also deployed to manage domain 

name resolution for external services. 

o Worker Node: This node, with 10 GB of storage, is dedicated to deploying user-facing 

microservices such as the NGINX reverse proxy and the application frontend. 

This two-node design was chosen to separate the execution of application components from AC3 management 

components.  

The cloud cluster is connected to the SD-WAN cluster through a local area network (LAN) provided by IONOS. 

EURECOM Region 

The second deployment region is hosted by EURECOM and is composed of two sub-regions: the EURECOM Edge 

and the EURECOM Far Edge. 

EURECOM Edge 

The EURECOM Edge infrastructure consists of approximately 500 GB of storage, 68 GB of RAM, and 22 CPU cores, 

distributed across two clusters: 

• SD-WAN Edge Cluster:  

This cluster is a single virtual machine with 2 CPU cores, 4 GB of RAM, and 20 GB of storage. It is dedicated to 

running the SD-WAN edge component, providing connectivity between the EURECOM edge and other regions. 

• Edge Cluster: 

This is a single-node cluster running on K3s. It includes 20 CPU cores, 64 GB of RAM, and 480 GB of disk space. It 

hosts both AC3 components—such as the K3s LMS and the VIM adaptation agent—and selected application 

microservices, including the database backend. Due to the relatively higher resource availability compared to the 

far edge, logical isolation between AC3 components and application microservices is maintained using K8s 

namespaces. 

Similar to the IONOS setup, the SD-WAN edge and edge clusters are interconnected via a LAN provided by 

EURECOM. 

EURECOM Far Edge 

The second part of the EURECOM region is the EURECOM Far Edge, represented by a single-node K3s cluster 

running on an NVIDIA Jetson Orin device equipped with a GPU. This node has 64 GB of RAM and 64 GB of storage. 

This cluster is used to deploy the same AC3 components as in the edge cluster—specifically, the K3s LMS and the 

VIM adaptation agent—as well as the image processing service. As in the edge setup, logical isolation is enforced 

using K8s namespaces to separate AC3 components from application-level services. For connectivity, the far-edge 

cluster, running on the UAV, is connected via a 5G base station deployed at EURECOM, enabling communication 

with the other parts of the infrastructure. 
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Figure 15. Testbed Architecture 

4.3 Component Integration Design 

The UC2 smart monitoring application leverages multiple components of the AC3 CECC Manager framework, 

working together as illustrated in Figure 16, where the implemented AC3 components are highlighted. These 

components orchestrate UAV-based video analytics and sensor data streams across the cloud–edge continuum. 
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Figure 16. Mapping of the AC3 Component Architecture to the Current Implementation in UC2. 

The UC2 application is composed of five microservices, each deployed in a suitable region based on its role and 

interdependencies. For example, the Frontend microservice needs to be accessible over the internet but does 

not require low-latency access to other microservices or proximity to camera devices. Therefore, deploying the 

frontend in the cloud conserves edge resources, which can then be allocated to microservices that require edge 

deployment. A similar rationale applies to the Nginx microservice, which acts as a gateway by exposing the 

services to end users through a single point of access. 

The DeepStream microservice requires direct access to the camera to stream video and utilizes the NVIDIA Jetson 

GPU for traffic analysis. It sends both the video stream and the object detection results to the Backend service. 

Therefore, this microservice is deployed on the drone, which is equipped with both the camera and the Jetson 

device. The placement of the microservices and their dependencies is illustrated Figure 17. 
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Figure 17. Microservice Architecture and Placement in UC2 

To deploy the application, the implemented CECC Manager components are used, as illustrated in Figure 18. 

First, the application developer uses the northbound API (via the GUI) to define the UC2 application using the 

available application and data source blueprints. Once the application composition is submitted, the request is 

processed by the OSR. The OSR validates the UC2 AppD’s and policies, then, merges the service and data 

definitions into a single AppD, ensuring that all semantic rules and requirements are met. 

Next, the application creation request is forwarded to the LCM, which selects the appropriate infrastructure 

(cloud or edge) for each microservice and initiates the application onboarding process in the selected regions. 

To achieve this, the LiSO LCM sends requests to the Virtual Infrastructure Manager (VIM), which acts as the 

Decision Enforcement component. 

Each deployment site has a corresponding Adaptation Agent, implemented as a VIM. The latter manages the 

local management systems (e.g., K8s and K3s) and image registries to onboard the microservice images. Once 

the application is onboarded, LiSO configures the inter-cluster network via the SD-WAN Controller, ensuring that 

microservices deployed across different regions can communicate with each other. 

Following onboarding, LiSO begins the application instantiation process. As with onboarding, LiSO's requests pass 

through the VIM Manager and are executed by the VIM to instantiate the microservices across the three target 

clusters: IONOS (Cloud), EURECOM Edge, and onboard the drone (i.e., far edge) equipped with an NVIDIA Jetson 

device. 

Finally, LiSO completes the network configuration by exposing the user-facing microservices to the internet 

through the SD-WAN Controller, which updates the SD-WAN Edge network rules accordingly. Once the 

application is fully instantiated, LiSO returns information about the running instances, including IP addresses, 

ports, and the links to access the internet-exposed microservices. 

While the application is running, the Monitoring System, described in the next section, continuously collects 

performance metrics from the deployed services and infrastructure; for example, container CPU/memory and 

streaming framerates from the Jetson nodes. These metrics feed back into the LCM to support application 

adaptation via resources scaling or microservices migration.  

In summary, the CECCM components (Service Catalogue, OSR, LCM, Monitoring and Data Management) enable 

the UC2’s video analytics services to run continuously and migrate seamlessly across UAV, far-edge, and cloud 

nodes as conditions change. 
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Figure 18. Detailed Workflow for UC2 Application Deployment Using the AC3 CECC Manager Framework 
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4.4 Component Integration Status 

4.4.1 Application Interface 

The user-facing application developed for UC2 offers a comprehensive and interactive interface designed to 

manage the UAVs, monitor system performance, and review real-time and historical detections. The interface 

has been developed with usability in mind, providing a smooth user experience for system administrators and 

operators. 

Figure 19 shows the user authentication screen, which provides a secure login experience enhanced with 

CAPTCHA verification to ensure bot protection. 

 

Figure 19.  UC2 User Authentication screen 

After successful login, users are directed to the Regions dashboard, as illustrated in Figure 20. Here, they can 

create and manage edge servers by filling in configuration details such as IP address and status. 
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Figure 20. UC2 Edge Server configuration screen 

Figure 21 demonstrates the process of adding a far edge device to an existing edge server. Users can define the 

device’s location, type, and associated sensors through a structured form. Once saved, the devices appear in the 

system and can be controlled from the interface. 

 

Figure 21. UC2 Far Edge Server configuration screen. 
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Figure 22 presents the device management screen, where users can view the status of devices, including their IP 

address and operational status. Control actions such as viewing live data or deactivating a device are available 

directly from this interface. 

 

Figure 22. UC2 device management 

Figure 23 highlights the real-time detection and monitoring dashboard, which includes live video feeds with 

bounding boxes for object detection (e.g., people, cars, signs), system resource usage (CPU, GPU, memory), and 

a dynamic timeline chart visualizing detection events over time. 

 

Figure 23. Real-time detection and monitoring dashboard 
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Finally, Figure 24 showcases the query and archive review panel, allowing users to filter, retrieve, and browse 

through large volumes of historical detection events using attribute-based filters. Results are presented in a 

paginated grid of annotated snapshots, enabling deep forensic analysis. 

 

Figure 24. Query and archive review panel 

4.4.2 GUI for Developer (Application Gateway) 

The GUI, also known as the Application Gateway, is the primary interface through which application developers 

define their application deployment configurations. It offers two modes of interaction: 

• Interactive Form-Based Input: Users can fill in an intuitive multi-step form that captures all necessary 

information, including application metadata, microservices configuration, networking preferences, and 

SLA constraints. This form is designed to simplify the process of describing a complex microservice-based 

application, even for non-expert users. 

• Structured JSON Upload: Alternatively, users can upload a predefined JSON file conforming to the AppD 

schema. This method allows advanced users to work in a more automated way, reusing or customizing 

existing configurations. 

Figure 25 illustrates the first step of the form, where the user provides basic application metadata such as the 

application name and version. It should be noted that even though we are showing the GUI interfaces only for 

UC2, all UCs will use this GUI as an entry point to AC3 CECCM to define, configure, and deploy their respective 

applications.  
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Figure 25. UC2 Application metadata input 

Figure 26 shows a deeper level of interaction, where the user configures individual microservices by specifying 

container image, resource requirements, environment variables, and service-specific SLAs. 
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Figure 26. Microservices configuration form 

Figure 27 demonstrates how users define network interconnections, describing which services communicate 

with each other, the protocol used, and expected network SLAs. 

 

Figure 27. Networking Graph Configuration 
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These inputs are then passed to the OSR, which handles the backend logic for descriptor generation. 

4.4.3 Ontology and Semantic Reasoner 

The OSR is a central component responsible for translating high-level user inputs into a standardized, machine-

readable AppD, expressed in YAML format. This descriptor captures all aspects of the application, including 

microservice definitions, interconnections, SLAs, and deployment constraints. Upon receiving the structured 

input from the GUI, the OSR performs a number of operations: 

• Validation of the input data based on predefined ontologies and JSON schemas. 

• Composition logic, which includes interpreting dependencies, aggregating resource requirements, and 

organizing networking rules. 

• Retrieval of complementary services if needed from Piveau, especially for data connectors or utility 

services linked to the specified datasets. 

• Descriptor generation, where all this information is synthesized into a deployable YAML file compatible 

with the Cloud-Edge Continuum infrastructure. 

Following is the high-level structure of the UC2 AppD generated by the OSR. It includes application metadata, a 

microservices configuration section, networking information section, and SLA specifications. 

ApplicationName: "Surveillance System"  
Version: "1.0.0"  

   
Microservices_configuration:  

   
Global_SLA:  

ServiceAvailability: "99.9%"  
MaxLatency: "500 ms"  
MaxResponseTime: "Low"  
DataThroughput: "High" 

 

Following is a concrete example of the Deepstream microservice configuration. This includes CPU/GPU 

requirements, image name, exposed ports, and required environment variables for AI-based video analytics. 

• MicroserviceName: "deepstream" 

Version: "1.1.0" 
Image: "capy8ra/ac3-uc2-ds: 28" 
ID: "deepstream" 
Dependencies: 

- "backend" 
- "database" 

ResourceRequirements: 
Cpu: "4 VCPUs" 
Memory: "16Gi" 
Storage: "N/A" 
Gpu: "NVIDIA GPU (specific model based on throughput)" 
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MicroservicesSLAs: 
ServiceAvailability: "99.9%" 
MaxResponseTime: "Low" DataThroughput: "High" 
ReplicaCount: "1" 
EnvironmentVariables: 

- Name: "LOG_LEVEL" 
Value: "INFO" 
- Name: "DB_HOST" 
Value: "db" 
- Name: "DB_PORT" 
Value: "5432" 
- Name: "DB_NAME" 
Value: "ac3" 
- Name: "DB_USER" 
Value: "postgres" 
- Name: "DB_PASSWORD" 
Value: "root" 
- Name: "NO_DISPLAY" 

Value: "1" 
Protocol: "TCP/RTSP" 
InternetAccess: "false" 
GeographicalArea: 
Region: "Edge" 
LocationType: "edge" 

 

Following is the networking graph extracted from the descriptor, illustrating service-to-service communication 

paths and the corresponding SLAs for each connection. 

Networking_graph: 

• Source: "backend" 

Destination: "db" 
Protocol: "TCP" 
Port: "5432" 
ConnectionSLAs 

Latency: "Less than 500 ms" 
Availability: "99.9%" 
Bandwidth: "High" 
ErrorRate: "Less than 1%" 

 

• Source: "frontend" 

Destination: "deepstream" 
Protocol: "TCP" 
Port: "8585" 
ConnectionSLAs: 

Latency: "Less than 500 ms" 
Availability: "99.9%" 
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Bandwidth: "High" 
ErrorRate: "Less than 1%" 

 

• Source: "frontend" 

Destination: "backend" 
Protocol: "TCP" 
Port: "8000" 
ConnectionSLAs: 

Latency: "Less than 500 ms" 
Availability: 
"99.9%" 
Bandwidth: "High" 
ErrorRate: "Less than 1%" 

 

By automating the composition and validation of AppD’s, the OSR enables scalable and accurate deployment 

across the CECC infrastructure. The generated descriptor is ultimately passed to the LCM for deployment. 

4.4.4 LCM 

In UC2, application LCM functionalities are implemented using the LiSO network and service orchestrator 
developed by EURECOM. LiSO exposes a northbound REST API that enables the orchestration of services and 
their constituent applications. Services are described using a Network Service Descriptor (NSD), which defines 
the specific configuration of microservices, their interdependencies, and the infrastructure and resource 
requirements of the applications. 

As illustrated in Figure 28, LiSO is composed of several key components, including the orchestrator, VIM manager 
and the VIM. The VIM manager translates high-level orchestration requests into a series of object creation or 
deletion operations for the underlying VIM. While the VIM interacts directly with LMS APIs such as K8s, K3s, and 
OpenShift. Additionally, the VIM handles the management of container images for microservices and oversees 
local image registries. 

4.4.4.1 Application Deployment 

LiSO exposes its rest API to the OSR, meaning that any application creation or deletion is triggered by the OSR. 
In order to enable the communication between the two components, we introduce a translator at the OSR level, 
the role of the translator is to translate the AC3 application descriptor into an NSD. The translator sends the 
resulting NSD as part of the application creation request to LiSO. 

At the LiSO level the NSD is decomposed by microservice, and each microservice follows the onboarding and 
instantiation steps. 

For the onboarding, LiSO constructs the microservice package, which is a descriptor of the microservice. LiSO 
requests the VIM Manager to onboard the microservice. The VIM manager then sends a request to the VIM to 
push the microservice image to the local registry used at the deployment location and create a namespace (in 
the case of K8s LMS) or a project (in the case of OpenShift LMS) for the application. The microservice container 
image can be collected in three different ways: either a container image repository available at a registry 
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accessible to the VIM, a Git repo with a Dockerfile so that the VIM can build the image and push it locally, or as 
a tar file location containing a save of the container image (the output of docker save). 

At the instantiation stage, LiSO creates an instance ID for the application; an onboarded application can be 
instantiated multiple times; each instance has its own ID and is independent in its lifecycle management from 
the other instances. Once the instance ID is created, a request is then sent to the VIM Manager, which will 
request the VIM to create all the objects needed to run the application, including services, deployments, 
configmaps, volumes, etc. Once the objects are created, LiSO ensures that the application’s microservices are in 
a running state. This check goes through the VIM Manager and the VIM. After the application is running, LiSO 
receives all information about the microservice, including network configuration. 

Figure 28 summarizes the AppD translation from the OSR to K8s Objects. 

 

Figure 28. Translating the AC3 AppD to a LiSO Network Service Descriptor 

4.4.4.2 Application Adaptation 

LiSO uses a monitoring system and resource exposure, as shown in Figure 29, to continuously monitor the 
running application and the underlying infrastructure. In terms of application adaptation mechanisms, LiSO 
implements two mechanisms: 

• Application Fault Detection: LiSO is capable of detecting application instance failures and can 
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automatically trigger the redeployment of the affected application. This mechanism relies on periodic 
polling of the LMS API to monitor the status of running workloads. For example, in a K8s environment, 
LiSO checks whether the pods are in the “Running” state. If they are not, and the issue persists beyond 
a predefined time interval, LiSO initiates the recreation of the application to restore its functionality. 

• Detection of Application Performance Degradation: LiSO leverages monitoring data to detect suboptimal 
resource configurations, particularly when the resources allocated to an application are insufficient for 
its proper functioning. Depending on the preferences set by the application owner, LiSO can then: 

o Mark the application's configuration as insufficient. As a result, any subsequent status requests 
for the application will include a "resources-misconfiguration": "true" field in the response. 

o Invoke the XAI-enabled vertical resource autoscaler, developed in WP4, to dynamically adjust 
the application's resource allocation and correct the misconfiguration. 

 

Figure 29. Detailed Architecture of LiSO and Its Mapping to AC3 Framework Components 
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4.4.4.3 AI LCM algorithms  

LiSO’s decision engine incorporates AI/ML algorithms to optimize lifecycle management, employing: 

• Predictive Analytics: Historical telemetry (CPU load, network throughput, sensor trends) is fed to a 
prediction model that forecasts future workload and resource demand. Based on these predictions, LiSO 
proactively scales the application’s resources. 

• Microservices Migration: The main algorithm we will showcase in UC2, implemented by LiSO, is the 
microservice migration mechanism, which is thoroughly detailed in deliverable D3.2. The core idea is 
that when an edge node becomes overloaded or encounters network degradation, LiSO can perform live 
container migrations or reassign tasks to alternative nodes with available resources. This helps maintain 
consistent frame rates and low latency. 

The outputs of these AI algorithms feed directly into LiSO’s orchestration decisions, effectively closing the loop 
of continuous learning and orchestration. 

4.4.5 Monitoring 

4.4.5.1 Monitoring Framework Integration 

In order to gain comprehensive insight into the performance of managed applications and the underlying 
infrastructure resources, LiSO employs a custom monitoring framework. This framework is designed to provide 
end-to-end visibility into application performance across all infrastructure locations where the application's 
microservices are deployed. 

The monitoring system uses a metrics collector for each application at each deployment location. These local 
collectors gather performance metrics relevant to the application instance in their specific region. All keys UC2 
metrics (resource usage, frame rates, sensor readings, etc.) are collected from local monitoring systems available 
at the cluster level, such as Prometheus. Then, the collectors enrich the collected data with contextual 
information such as the application ID, microservice ID, and deployment location. The structured metrics are 
then sent to a Kafka message broker. 

From Kafka, a central collector, one per application, retrieves metrics from all deployment regions, aggregates 
them per service, and forwards the results to an external RabbitMQ broker. This real-time metrics stream enables 
application owners to access up-to-date performance data, which is particularly useful when real-time 
monitoring is required. In parallel, the application metrics collector stores the metrics in an InfluxDB time-series 
database. These stored metrics are then visualized through custom dashboards, tailored per application or per 
application owner, using an external Grafana server. The LCM module has access to this database and can query 
metrics across different applications as needed. 

Note that both the metric collection streams and their exposure are isolated per application. Access to the 
external Grafana and RabbitMQ instances requires valid credentials, ensuring data privacy and enabling secure 
multi-tenancy. 

4.4.5.2  Monitoring Metric 

In UC2, we focus on the metrics that most accurately reflect the application's performance, including: 

• Resource Usage: CPU and GPU utilization, memory usage, and disk I/O for each node and container. 
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• Network Metrics: Throughput and packet rates on network interfaces; latency and bandwidth usage 
between edge nodes. 

• Application Performance: UC2-specific KPIs such as video frame rate (frames per second), end-to-end 
latency, and frame-encoding quality. 

• Sensor Values: Relevant sensor readings (e.g., camera frame timestamps, environmental sensor values) 
generated by UC2 devices. 

• Service Health: Counters for active connections, request rates, error rates, and container restart counts. 

All metrics are presented on Grafana dashboards. Operators can view CPU/memory usage over time alongside 
the application’s frame rate, making it easy to correlate load with performance. Alerts can be set on these metrics 
(e.g., “frame rate < 25 fps” or “CPU > 90 % for 5 min”) to trigger notifications or further LiSO actions. 

4.4.6 Compute LMS 

K8s has been adopted as the Compute Local Management System for UC2. We have deployed a lightweight K8s 
distribution, K3s, at the far-edge site (on the NVIDIA Jetson/RPi hardware) and a K8s cluster in the central cloud. 
LiSO is connected to these clusters’ APIs and is capable of launching container pods on either. The initial 
deployments (video analytics and data services) ran successfully on the Jetson nodes, confirming that the 
Compute LMS is functioning. Resource profiles of the clusters (CPU, memory, GPUs) have been entered into the 
CECCM so that LiSO can target the appropriate nodes. In short, the compute environment is in place and 
recognized by the CECCM: UC2 services can be instantiated on the K8s-managed edge and cloud as needed. 

4.4.7  Network LMS 

We use the SD-WAN controller and SDWAN Edges at each region as the network LMS for the UC2. The SDWAN 
Controller provides an API to the LCM to programmatically configure the network. The configuration includes 
interconnecting the microservices running in different regions: IONOS Cloud and EURECOM Edge. Further, the 
SDWAN Controller also allows the LCM to expose a microservice to the internet. All the configurations are 
enforced at the SD-WAN Edges level, where overlay networks are created for intra-cluster communication and 
use DNAT rules to expose application ports to the internet. 

4.5 Remaining Integration 

4.5.1 Deployment via GUI 

The components needed to finalize the deployment process are already integrated. However, to enhance the 

user experience, application owners should be able to deploy their applications through a simpler interface than 

the command line. To achieve this, the deployment workflow needs to be integrated into the AC3 web portal. 

4.5.2 Integration of Predictive Models with AI-based LCM 

As previously mentioned, this UC demonstrates the microservice migration algorithm. To support this, the AI 

models that trigger the migration process must be integrated with the LCM and other decision-making 

components responsible for selecting the new microservice location. 
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4.5.3 Final Use Case Test 

The UC has already been validated in a multi-cluster environment using both local and 5G networks. However, 
to test in a more realistic scenario, we still need to mount the object detection model on a drone. 

4.6 UC2 Integration Summary 
Table 4: UC2 Integration summary 

Architecture component   Sub-Component   Description   Integration status   

Application gateway 
(GUI)   

  
Allow the application developer to 
define its application components 
and SLA.    

Complete 

OSR    Allow the generation of the AppD  Complete 

LMS Edge     

Will manage the micro-services 
that cannot run at the far edge 
(due to low computing resources) 
and centralised cloud for low 
latency or bandwidth 
optimization.    

Complete 

LMS Far Edge     

Will manage the micro-services 
that will run on the far edge device 
(i.e., UAV). Video capture and 
object detection microservices.    

Complete 

LMS Cloud     
Will manage and run the front-end 
micro-service.    

Complete 

LMS Networking     
Will interconnect the clusters (K3s, 
K8s and ION Cloud).    

Complete 

Application and resource 
management   

Monitoring   Monitoring the micro-services KPI    Complete 

AI-based LCM and 
Decision 
Enforcement  

1. Manage the micro-services Life 
Cycle  
2. Migration algorithm that adapts 
if the far-edge resource degrades 
or moves to the far-edge a micro-
service  

1. In progress 

2. In progress 

Zero-touch 
configuration and 
application 
management 
(predict drones’ 
availability)  
  

Predict and describe infrastructure 
resources and implement 
automated corrective measures.  
  

In Progress 

AI-Based 
application profile   

Predicting Application Behaviour  In Progress 

AI-Based resource 
profile   

Describe the resources of the 
infrastructure   

In Progress 
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5 UC3 
5.1 Use Case Description  

UC3 focuses on advancing our understanding of galaxy evolution across cosmic time through the processing and 

analysis of large-scale 3D astronomical data cubes generated via Integral Field Spectroscopy (IFS). These data 

cubes are sourced from advanced instruments, including MEGARA at the 10.4 m Gran Telescopio de Canarias, 

MUSE at the Very Large Telescope, and MaNGA at the 2.5 m Sloan Telescope. Combining spatial and spectral 

information, the data cubes provide critical insights into stellar kinematics, population characteristics such as age 

and metallicity, and the underlying processes driving galaxy formation. A representative example involves the 

analysis of the nearby galaxy UGC 10205, where MEGARA data cubes are processed to map continuum emission 

and fit spectra using Full-Spectrum Fitting techniques. UC3 addresses significant computational challenges, 

including the management of vast data volumes, orchestration of complex data pipelines, and assurance of 

robust system availability. These issues often exceed the capabilities of traditional standalone systems, 

necessitating a more scalable and distributed approach. 

5.1.1 Use Case Objectives 

UC3 aims to leverage the AC3 framework to establish a scalable and distributed infrastructure for processing 

large-scale astronomical data, while enhancing resource efficiency and supporting cutting-edge research into 

galaxy evolution. The specific objectives are as follows: 

• Achieve a minimum 50% reduction in processing time for 5GB data cubes compared to standalone nodes 

by integrating cloud and edge resources, ensuring efficient handling of hundreds of terabytes of 

astronomical data. 

• Ensure 100% system reliability to support uninterrupted research, mitigating the risk of downtime during 

data processing and analysis workflows. 

• Utilize containerized microservices with spectral analysis tools, including pPXF, STECKMAP, and 

STARLIGHT, to extract key parameters such as stellar velocity, metallicity, and higher-order kinematic 

moments like skewness and kurtosis, advancing insights into galaxy evolution. 

• Deploy the UC3 testbed via the CECCM framework across OpenShift clusters with cross-cluster 

networking via the AC3 network operator, enabling dynamic task distribution, zero-touch deployment, 

and AI-driven resource optimization. 

• Enhance resource management through parallel processing and container orchestration, minimizing 

memory and CPU consumption while maintaining scalability. 

• Establish a benchmark for large-scale astronomical analysis, led by UCM and RHT, to empower the 

scientific community in accelerating discoveries and fully harnessing the capabilities of modern 

telescopes. 

5.1.2 UC3 Stakeholders 

5.1.2.1 Users / Astronomers 

The primary beneficiaries and users of the deployed UC3 application are the astronomers. They will experience 

an improved and simplified workflow as the application allows them to more efficiently process astronomical 

data of varying instruments, and to effectively gather and analyse results from the various processing 

applications. By providing a cohesive environment for managing data acquired from a variety of astronomical 

instruments, the system directly supports their research objectives and accelerates their analytical processes. 
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5.1.2.2 Application Developers / DevOps 

Application developers are responsible for building the UC3 application. This involves providing the necessary 

wrapping for the three specialised astronomy processing applications (Starlight, PPXF, and Steckmap). Their work 

focuses on developing the UC3 application to handle the efficient ingestion of astronomical data and the 

structured management of the processed outputs from these astronomy applications. 

The DevOps team would deploy the application and would also stand to gain significant advantages through 

reduced operational workload. The integrated LCM system, which provides zero-touch management, automates 

many of the routine and complex tasks associated with deploying, scaling, and maintaining the application. The 

result is a substantial reduction in operational burden, allowing the DevOps team to allocate their expertise to 

more strategic initiatives rather than day-to-day management. 

5.1.2.3 Infrastructure Provider 

The Infrastructure Provider will be responsible for integrating and offering the CECCM. This involves the technical 

work of assembling and deploying the various components that constitute the CECCM, such as Maestro, the OSR, 

the Network Operator, and data connectors. They ensure the CECCM is operational and available to the 

Application Developers / DevOps team for deploying and managing their applications across the federated cloud-

edge environment. 

5.2 Use Case Architecture 

To realise the vision of UC3, we have designed both an application and a testbed that enables scalable, 

distributed processing of large-scale astronomical datasets while leveraging the AC3 framework’s advanced 

orchestration and resource management capabilities. The architecture is tailored to address the computational 

challenges of handling vast datasets from IFS instruments such as MEGARA, MUSE, and MaNGA, ensuring 

efficient data ingestion, processing, and analysis across a federated cloud-edge infrastructure. The application is 

structured into two core components, the Orchestrator and the Processor, designed as an event-based system 

to support scalability and loose coupling. 

For instance, the AC3 Network Operator is implemented to establish and dynamically manage connectivity 

between these K8s clusters, creating a cohesive virtual application network that allows services and workloads 

to communicate seamlessly across physical infrastructure boundaries. Furthermore, Maestro, functioning as the 

LCM platform, orchestrates the deployment of the application by interpreting the AppD generated by the OSR 

and generating the necessary K8s resource descriptors. Maestro also adapts the application's execution through 

capabilities such as vertical resource autoscaling, horizontal pod autoscaling, or migration, based on insights from 

AI model recommendations. This comprehensive architecture not only handles the processing of vast astronomy 

datasets but also enhances system reliability and reduces processing times through distributed computing and 

AI-driven lifecycle management. 

5.2.1 Use Case Application 

Professional telescopes, equipped with large mirrors, are designed to collect massive amounts of light from 

various celestial sources. These mirrors are responsible for redirecting and focusing the incoming light towards 

the detectors, which can count the number of photons falling on each part of the detector. Through a digital-to-

analogue conversion (DAC) system, these analogue signals are converted into digital signals, which facilitates 

data manipulation. Among the digital data produced by the telescopes are data cubes, which are used in our UC. 
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Core to the UC application are the pre-existing astronomy analysis applications (Starlight, PPXf, Steckmap) that 

are used today by the astronomers at UCM. These applications are heterogeneous, with a mix of off-the-shelf 

and custom-built software, built on differing computing architectures with varying underlying requirements for 

execution. To make these applications operate in a scalable way and to be managed by the AC3 architecture, the 

applications have been containerized and made deployable on K8s.  

The application is split into 2 core parts, the Orchestrator and the Processor. The Orchestrator is responsible for 

ingesting the observation data batch and splitting it into smaller chunks for parallel analysis by the Processors. 

The Processor then utilises the appropriate analysis software to execute the data analysis and returns the results 

to the Orchestrator for correlation. We have designed the application as an event-based system to support 

scalability and loose coupling of the components. This allows us to scale the number of Processors in a simple 

way, and to also distribute Processors across a federated infrastructure. 

 

Figure 30. UC3 Application Architecture Orchestrator 

As illustrated by Figure 30, the orchestrator contains 2 core components, the Event Generator and the Results 

Processor. The Event Generator monitors the local data storage location waiting for input data and configuration 
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files, detailing the data batch type as well as some analysis processing parameters. The data is then split into sub-

batches of a fixed size (based on configuration options). The data and config files are then wrapped in an event 

and dispatched to the processing queue in the messaging bus. 

In this UC, we have selected RabbitMQ as the messaging broker, using the AMQP messaging protocol. Here we 

have defined 2 queues, one for data processing payloads and the other for results coordination. 

5.2.1.1 Processor 

The processor is the heart of the UC3 application and contains several critical components. First and foremost 

are the Data Analysis applications themselves. Starlight, pPXF and Steckmap. These applications are effectively 

off-the-shelf components, which introduce the challenges of varying architectures, features, and execution 

models. For instance, Starlight is a binary executable built in Fortran, which executes a single batch per execution 

of the application. In this situation, we need to build adaptation logic to enable us to trigger the application 

execution remotely, in a repeatable and scalable way. We currently have full support for Starlight execution, 

while pPXF support is currently in development with Steckmap to follow shortly.  

The Receiver component is responsible for listening for events, unpacking the payloads and routing the data 
batch to the appropriate processor application. Routing is based on the event type, where configuration and 
observation data are delivered to the appropriate data staging location and the application execution is 
triggered. The receiver also ensures that the Processor does not attempt to process multiple batches of different 
types concurrently, to mitigate performance issues and ensure the predictability of the processing time. Once 
processing has completed, the receiver is notified and is free to begin processing the next batch. 

The Watcher monitors the output data, packages this into result events, and dispatches them to the appropriate 
queue for the Orchestrator to correlate. 

5.2.2  UC3 Testbed – Hardware and Software 

The UC Testbed, illustrated in Figure 31, is composed of applications and components distributed across multiple 

K8s clusters, deployed in different data centres and cloud environments. This architecture facilitates multi-site 

deployments, resource scaling, and advanced monitoring capabilities across platforms. 

The testbed consists of three core environments: the Astronomy Lab, the LCM Cluster, and the UC Application 

Clusters. Within the Astronomy Lab we include the telescopes themselves, which are the source of the data 

observations. These instruments capture light from distant astronomical objects and channel it through precision 

optics to photon-sensitive detectors. The resulting signals, initially analogue, are digitised via DAC systems to 

enable further computational processing. A key output of this process is the generation of data cubes, which are 

central to our UC. Also, within the Astronomy Lab is a K8s-based environment running Python scripts for data 

manipulation and processing.  

The LCM Cluster hosts the Maestro orchestration system, with the presence of a K8s cluster currently under 

verification. The UC Application Clusters feature a dual-cluster deployment supporting multi-cluster operations 

for application scalability. 

In the Application clusters, the primary environment is an OpenShift-based deployment platform where 

applications are initially provisioned and tested. A secondary OpenShift cluster complements it, enabling multi-

cluster deployment scenarios to improve resilience and scalability. These clusters work together to simulate real-

world distributed systems, enabling dynamic microservice orchestration and lifecycle management. 
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5.2.2.1 Infrastructure Details 

Compute Resources per Application Cluster: 

• CPU: 24 vCores 

• Memory: 64 GB RAM 

• Storage: 200 GB SSD 

Monitoring and Management Tools: 

• Prometheus Operator for metrics collection and observability 

• UC3 Application deployed across OpenShift clusters 

• Maestro as a core orchestrator 

• Advanced Cluster Management (ACM) Operator for centralized governance 

• Multi-Cluster Scheduler for efficient workload placement 

• Network Operator for network automation and policy enforcement 

Multi-Cluster Control Plane 

The multi-cluster control plane is built on a single-node OpenShift cluster that acts as the management hub. This 

control plane serves as the central, unified layer responsible for orchestrating, governing, and monitoring all 

resources and applications across the distributed testbed environments. It integrates key operators to oversee 

and coordinate critical functions, including application scheduling, comprehensive observability, and intricate 

network configuration across multi-site deployments. 

By leveraging OpenShift, Prometheus, and advanced orchestration tools, this architecture supports scalable, 

observable, and resilient deployments tailored to microservice-based applications in a distributed, multi-cluster 

environment. 
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Figure 31. UC3 Infrastructure / AC3 Component Integration 

5.3 Component Integration Design 

As shown in Figure 32, there are several key AC3 components that we integrate with the UC3 application in order 

to demonstrate the collective benefit of the AC3 architecture. In terms of Data Management, the application 

leverages the EDC Data Connector to manage the seamless transfer of large volumes of galaxy observation data 

from the astronomer's lab environment to the processing application. The data source is also registered and 

described in the Piveau catalogue for discovery. 

The relevant application and resource usage metrics are exposed to the monitoring framework via the 

Prometheus collector deployed in each application cluster. These metrics are for training the ML models as part 

of the application and resource profiling, as well as for inference to trigger intelligent Lifecycle Management 

actions. 

In the role of LCM, we have used the Maestro orchestrator from UBITECH. Maestro is responsible for the 
deployment of the application as well as enforcing application runtime decisions based on the AI model 
recommendations. Specifically, Maestro interprets the AppD generated by the OSR for our data processing 
application and generates the K8s-based LMS resource descriptors required for deployment on the K8s LMS. 
Maestro will also adapt the execution of the application (e.g., executing vertical resource autoscaling, horizontal 
pod autoscaling, or migration) based on the output of the resource/application ML models. 
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The Compute LMS utilised in this UC is K8s. Specifically, we employ a mix of OpenShift and K8s for individual 

compute clusters as well as an additional multi-cluster control plane in the form of ACM and a multi-cluster 

scheduler. Maestro will generate the multi-cluster scheduler manifests that allow the scheduling and 

deployment of the application across multiple clusters. 

Finally, to ensure that any potential deployment or scaling of the application across multiple clusters maintains 

connectivity between components, we leverage the Network Programmability operator developed in WP4. The 

operator can be instructed to create new Layer 7 tunnels between applications deployed on different clusters  

 

Figure 32. UC3 / AC3 Component Integration – How UC3 leverages the components developed in AC3 

The UC3 Application Onboarding diagram (see Figure 33) outlines the process for deploying applications within 

the system. It begins with the user specifying the application details in a JSON format via the GUI, part of the 

Application Gateway. The GUI forwards service details to the Service Catalogue, which can also be leveraged by 

the user to select pre-existing services to use in their application. The GUI also sends the application details to 
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the App Gateway, which forwards them to the OSR to be translated into a machine-readable format called the 

Resource Description Framework (RDF) which is used to represent and exchange graph data. The application 

details are then sent to the application gateway and consolidated into the final AppD. The AppD is then included 

in the service catalogue and sent to the LCM, which coordinates the deployment of the application on the 

testbeds. 

 

Figure 33. UC3 Application Onboarding Pipeline 

 

The UC3 Processing Workflow diagram (see Figure 34) illustrates the data processing pipeline for UC3. Astronomy 

data from the source is first saved to the UCM Ionos Simple Storage Service (S3) storage bucket. The UCM 

Provider Connector transfers this data to the Red Hat Consumer Connector, which stores it in the Red Hat S3 

storage bucket. The UC3 Orchestrator watches for new data and retrieves results as needed, coordinating with 

RabbitMQ to send batch data to the UC3 Processors for computation. Processed results are then stored back in 

Red Hat S3 and transferred to UCM Ionos S3 for final storage. This sequence ensures efficient data handling and 

processing, leveraging the work/event dispatching model central to our architecture. 
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Figure 34. UC3 Data Processing Pipeline 

The UC3 Monitoring diagram (see Figure 35) details the runtime monitoring and resource management 

mechanisms in place. The UC3 Orchestrator, RabbitMQ, and processors are the core components responsible for 

preparing and processing the data. As such, this process must be monitored to ensure KPIs are met and resource 

utilisation is efficient. Prometheus monitors queue length to gauge workload demands, while the UC3 Processors 

are monitored for CPU and RAM usage. These metrics are collected and fed into the Monitoring Framework, 

which informs the App and Resource Profiles. The LCM leverages this data to make informed decisions, triggering 

scaling or migration actions to maintain system performance and resource efficiency. This monitoring process 

ensures that the system can dynamically adapt to varying operational conditions, supporting the overall stability 

of the UC. 
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Figure 35. UC3 Monitoring Sequence Diagram 

5.4 Component Integration Status 

5.4.1 Application Interface 

The UC3 application GUI shown in Figure 36 provides users with a structured view of the astronomy data batches 

stored in the S3 buckets, facilitating the management and monitoring of the batch processing workflow executed 

by the UC. The bucket directory structure is as follows:  

• Top-Level Directory (/batch_name_date): Displayed in the application UI as a collapsible folder, labelled 

with the batch identifier and date (e.g., batch_001_2025-04-01). This folder groups all data related to a 

specific batch, allowing users to expand it and view its contents.  

• Status file (/batch_name_date/status): The status file details the list of files, the batch’s state (waiting, 

currently processing, finished), along with the start time, completion time, and duration.  

• Config Subdirectory (/batch_name_date/config/): The config subdirectory contains a configuration file 

which provides parameters used by the processing applications to correctly process each batch, these 

can be viewed or downloaded by users to verify the batch parameters.  

• Input Data Subdirectory (/batch_name_date/input_data/): The input data subdirectory lists the 

astronomy data files to be processed. Users can view these files in the UI or download them to inspect 

the raw data before processing begins.  
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• Results Data Subdirectory (/batch_name_date/results_data/): The results subdirectory contains the 

processed data generated by the astronomy processing applications such as Starlight or PPXF. 

 

Figure 36. S3 Bucket File Structure 

5.4.2 Data Management and Connectors 

5.4.2.1 Piveau catalogue 

The Piveau Catalogue, comprising both its data and service components, supports the management and 

accessibility of astronomy datasets for the processing applications. The data catalogue is designed to store key 

metadata for these datasets, including attributes such as dataset name, description, ownership details, and 

applicable usage licenses, alongside unique asset IDs. As part of the ongoing development, a sample astronomy 

dataset has been successfully integrated into the data catalogue. However, connector endpoints, which are 

essential for enabling data transfer, are not yet included within the data catalogue, and the corresponding 

connector has not been integrated into the service catalogue. At this stage, the system is not yet operational for 

users. Once fully implemented, the catalogue will allow users to negotiate access agreements directly with data 

providers, utilising their own consumer-side data connectors to secure permissions for downloading and using 

datasets in accordance with the specified policies and contract. 

To realise this functionality, subsequent development phases will prioritise the integration of connectors into 

the service catalogue. This process will involve embedding critical technical metadata, including required 

environment variables, exposed ports, connector names, descriptions, minimum computing resource 

requirements, and references to container images. Upon completion, this integration will empower application 

developers to select, configure, and deploy the appropriate connectors necessary for seamless data transfer to 

or from their applications. These enhancements will ensure robust interoperability between the Piveau 

Catalogue and UC3 applications, supporting the broader objective of establishing a scalable, efficient, and user-

centric data management framework within the research ecosystem. The system remains under active 

development and is not yet deployed for end-user utilisation. 
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5.4.2.2 Data type and examples (.fits) 

The data used in this UC is produced by IFS instruments, which generate astronomical data in the form of three-

dimensional data cubes. These cubes combine spatial and spectral information, capturing information from 

contiguous regions of the sky. Each data cube consists of two spatial dimensions, representing the x and y 

coordinates on the sky, and one spectral dimension, representing the wavelength. This format allows 

astronomers to analyse the spatial distribution of various spectral features across an observed field, providing 

detailed insights into the physical and chemical properties of celestial objects. By examining the light from 

different regions within the data cube, researchers can study the composition, kinematics, and evolution of 

galaxies, stars, and other astronomical phenomena with high precision. Specifically, we will focus on observations 

of galaxies. 

These data cubes are stored in the Flexible Image Transport System (FITS) format, the standard data format used 

in astronomy. FITS files are designed to store, transmit, and manipulate scientific data, particularly images and 

spectra. Each FITS file consists of a primary header and data unit (HDU), which contains metadata describing the 

data, followed by one or more extensions that store the actual data. This format supports multi-dimensional 

data arrays, making it ideal for storing the complex three-dimensional data cubes produced by integral field 

spectroscopy. FITS files are highly versatile and can include additional information such as calibration data, 

observational parameters, and processing history, ensuring that all necessary context is preserved for accurate 

data analysis. By using the FITS format, we ensure compatibility with a wide range of astronomical software and 

facilitate efficient data sharing and collaboration within the research community. 

Our UC leverages data from three different IFS instruments: MEGARA [7], MaNGA [8], and MUSE [9]. 

• MEGARA: MEGARA is an optical Integral-Field Unit and Multi-Object Spectrograph designed for the Gran 

Telescopio Canarias. It provides high-resolution spectroscopy data, which is crucial for detailed studies 

of stellar populations and kinematics within galaxies. The data cubes from MEGARA typically have 

dimensions of 40 × 43 × 4300, resulting in 1720 spectra per cube. Each MEGARA data cube weights 

approximately 62 MB, with the total volume of MEGARA data amounting to 7.1 GB 

 

• MaNGA: Part of the Sloan Digital Sky Survey, MaNGA (Mapping Nearby Galaxies at APO) obtains spectra 

across the entire face of target galaxies using custom-designed fiber bundles. MaNGA's goal is to 

understand the life history of present-day galaxies by providing two-dimensional maps of various stellar 

and ionized gas properties. The data cubes from MaNGA typically have dimensions of 74 × 74 × 6732, 

yielding 5476 spectra per cube. However, these dimensions can vary for different galaxy observations, 

and the sizes provided are indicative. The minimum and maximum sizes of the full data-cubes are 133 

MB and 757 MB, respectively, with a total volume of approximately 4.23 TB. 

 

• MUSE: The Multi Unit Spectroscopic Explorer (MUSE) is a panoramic integral-field spectrograph 

operating at the Very Large Telescope (VLT) of the European Southern Observatory. MUSE combines a 

wide field of view with improved spatial resolution provided by adaptive optics, making it a powerful 

tool for discovering and studying faint and distant astronomical objects. The data cubes from MUSE 

typically have dimensions of 319 × 320 × 3721, equating to 102080 spectra per cube. Similar to MaNGA, 

the dimensions of MUSE data cubes can vary depending on the specific observations of different galaxies, 

and the sizes mentioned are approximate. The minimum and maximum sizes of the full data-cubes are 
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2.3 GB and 28 GB in .gzip format, and 2.9 GB and 32.6 GB in FITS format, with a total volume of 

approximately 3.2 TB for the files in .gzip format. 

The data from these instruments vary in size and dimensions due to the different fields of view each instrument 

covers. This variability reflects the diverse observational capabilities and scientific goals of each instrument, 

highlighting the need to adapt existing astronomical software tools to be user-friendly for data from different 

instruments and telescopes. Example .fits data files are shown in Figure 37 and Figure 38. 

 

  

Figure 37. Example .fits data Figure 38. MEGARA Data-cubes as .fits file 

batches 

 

5.4.2.3 EDC S3 Extended Connectors Developed by Ionos 

To enable seamless data transfer between the UCM and the processing applications deployed on the UC3 

infrastructure, UC3 leverages the EDC S3 Data Connector extensions developed by IONOS. These EDC connector 

extensions facilitate bi-directional data exchange between S3 buckets, ensuring efficient and secure data flows. 

They incorporate data governance through predefined policies and contracts, which must be negotiated prior to 

initiating data transfers, thereby ensuring compliance and control over data usage. 

The EDC S3 extensions are designed to comply with industry-standard protocols for secure cloud storage, 

enhancing interoperability with diverse S3-compatible systems, and enabling integration with multiple project 

testbeds or external infrastructures. 

Within the UC3 workflow, these connectors serve as a vital link between data ingestion and processing. They 

transfer astronomy data from the UCM S3 bucket to the RHT S3 bucket for batching by the Orchestrator, while 

their bi-directional capability supports returning processed outputs to UCM. 
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S3 Buckets to Store Data 

S3 buckets have been created on the Ionos infrastructure by UCM and RHT to facilitate the storage, retrieval, 

and transferring of data by the connectors. Each bucket must be configured to allow the other parties connector 

read and write access by adding the Ionos user ID as a grantee in the bucket's Access Control List (ACL). There 

are several keys and endpoints provided by Ionos which must be included in the connectors configuration file or 

passed in as environment variables to ensure proper communication and access to the S3 bucket. 

Deployment 

The deployment of the EDC S3 Extended Connectors for UC3 is executed through a series of technical steps to 

ensure seamless integration with the OpenShift clusters on IONOS and Arsys infrastructures. Both the UCM 

provider and RHT consumer connectors are deployed as containerized applications, leveraging Docker images 

and OpenShift’s K8s orchestration for scalability and reliability. 

Each connector is deployed on an OpenShift cluster hosted on either the IONOS or Arsys testbeds. They use 

custom built Docker images which are pulled from a quay.io repository and deployed using K8s deployment 

manifests, while the connector’s configuration is mounted as ConfigMaps containing the respective 

config.properties files, which include the IONOS S3 credentials: 

edc.ionos.access.key= 
edc.ionos.secret.key= 
edc.ionos.token= 
edc.ionos.endpoint.region=eu-central-2 

These are injected as environment variables via the JAVA_TOOL_OPTIONS flag to ensure the connectors can 

access the corresponding S3 buckets. 

-Dedc.fs.config=/app/resources/config.properties 

A Hashicorp Vault server is deployed on the OpenShift testbeds alongside the connectors to manage temporary 

keys generated by the IonosS3Provisioner during the data transfer process and is deployed by both RHT and UCM 

with the details of each deployment being used in the corresponding connectors configuration: 

edc.vault.hashicorp.url=http://vault:8200 
edc.vault.hashicorp.token=myroot 
edc.vault.hashicorp.timeout.seconds=30 

Workflow 

The data transfer process begins with preparing the necessary JSON payloads to define the asset, policy, contract, 

and transfer request. These payloads are used to interact with the RHT consumer connector management API, 

which communicates with the UCM provider connector to facilitate the data transfer. The RHT consumer 

connector exposes its management API, which is accessible for issuing curl commands. The UCM provider 

connector responds to these requests to provide the data from the UCM bucket, and vice versa for the results 

transfer. 

First, an asset must be defined on the UCM provider side to represent the astronomy data in the uc3-provider 

S3 bucket. A JSON payload, “asset.json”, is created to register this asset before being sent to the UCM provider’s 

management API using a curl command: 
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{  
"@context": {"edc": "https://w3id.org/edc/v0.0.1/ns/"},  
"@id": "asset-1",  
"properties": {  

"name": "astronomy-data",  
"type": "IonosS3",  
"bucketName": "uc3-provider",  
"keyName": "astronomy-data.txt"  

}  
} 

 

curl -X POST "http://provider:8282/management/v3/assets" \ 
-H "Content-Type: application/json" \ 
-H "X-API-Key: password" \ 

-d @asset.json 

 

A policy must then be defined on the UCM provider side to govern access to the astronomy data. A JSON payload, 

“policy.json”, is created to define a policy that permits usage of the asset: 

{ 
  "@context": { 
    "edc": "https://w3id.org/edc/v0.0.1/ns/", 
    "odrl": "http://www.w3.org/ns/odrl/2/" 
  }, 
  "@id": "policy-1", 
  "policy": { 
    "@type": "odrl:Set", 
    "odrl:assigner": { 
      "@id": "provider" 
    }, 
    "odrl:target": { 
      "@id": "asset-1" 
    }, 
    "odrl:permission": [], 
    "odrl:prohibition": [], 
    "odrl:obligation": [] 
  } 
} 

 

curl -X POST "http://provider:8282/management/v3/policydefinitions" \ 
-H "Content-Type: application/json" \ 
-H "X-API-Key: password" \ 
-d @policy.json 

Next, a contract definition is created to govern the data transfer. A JSON payload, “contract.json”, is prepared to 

define the contract terms, linking the asset to a policy that permits access: 

{ 
   "@context": { 

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/management/v3/assets
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://provider:8282/management/v3/policydefinitions
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     "edc": "https://w3id.org/edc/v0.0.1/ns/" 
   }, 
   "@id": "contract-1", 
   "accessPolicyId": "policy-1", 
   "contractPolicyId": "policy-1" 

 } 

 

curl -X POST "http://provider:8282/management/v3/contractdefinitions" \ 
-H "Content-Type: application/json" \ 
-H "X-API-Key: password" \ 
-d @contract.json 

The RHT consumer then initiates a contract negotiation with the UCM provider. A JSON payload, is created and 

used via curl to request access to the asset: 

{ 
  "@context": { 
    "@vocab": "https://w3id.org/edc/v0.0.1/ns/", 
    "odrl": "http://www.w3.org/ns/odrl/2/" 
  }, 
  "@type": "NegotiationInitiateRequestDto", 
  "counterPartyAddress": "http://provider:8282/protocol", 
  "protocol": "dataspace-protocol-http", 
  "offer": { 
    "offerId": 
"Y29udHJhY3QtMQ==:YXNzZXQtMQ==:M2NlZTQ2OTYtNzc2Yi00Y2E0LWJlMWItM2NhMWU3OTg5NDAz" 
  }, 
  "policy": { 
    "@id": 
"Y29udHJhY3QtMQ==:YXNzZXQtMQ==:M2NlZTQ2OTYtNzc2Yi00Y2E0LWJlMWItM2NhMWU3OTg5NDAz", 
    "@type": "odrl:Offer", 
    "odrl:assigner": {"@id": "provider"}, 
    "odrl:target": {"@id": "asset-1"}, 
    "odrl:permission": [], 
    "odrl:prohibition": [], 
    "odrl:obligation": [] 
  } 
} 

 

curl -X POST "http://consumer:9192/management/v3/contractnegotiations" \ 
-H "Content-Type: application/json" \ 
-H "X-API-Key: password" \ 
-d @negotiation.json 

 

Once the negotiation is finalized (status FINALIZED), the response provides a contract agreement ID which is used 

to initiate the data transfer. A JSON payload, “transfer.json”, is prepared to define the transfer request. The 

transfer is initiated by sending this payload to the RHT consumer’s management API: 

{ 

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/management/v3/contractdefinitions
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://provider:8282/protocol
http://consumer:9192/management/v3/contractnegotiations
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    "@context": { 
        "edc": "https://w3id.org/edc/v0.0.1/ns/" 
    }, 
    "@type": "TransferRequestDto", 
    "connectorId": "provider", 
    "counterPartyAddress": "http://provider:8282/protocol", 
    "protocol": "dataspace-protocol-http", 
    "contractId": "76aa024a-ab24-4d22-bce9-a1d12e8a6e2f", 
    "assetId": "asset-1", 
    "transferType": "IonosS3-PUSH", 
    "dataDestination": { 
        "type": "IonosS3", 
        "storage": "s3.eu-central-2.ionoscloud.com", 
        "bucketName": "uc3-consumer", 
        "keyName": "asset-1.txt" 
    } 
} 

 

curl -X POST "http://consumer:9192/management/v3/transferprocesses" \ 
-H "Content-Type: application/json" \ 
-H "X-API-Key: password" \ 

-d @transfer.json 

 

The transfer process transitions through states (INITIAL, PROVISIONING, STARTED, COMPLETED), with the 

IonosS3Provisioner generating temporary keys (managed by Vault) to facilitate the S3 transfer. Upon completion, 

the astronomy data is available in the uc3-consumer bucket for processing by the RHT Orchestrator. 

This workflow ensures that data transfers are executed securely and in compliance with the predefined policies, 

leveraging the EDC S3 Extended Connectors’ capabilities within the UC3 environment. 

5.4.3 OSR and Application Descriptor 

The process of application onboarding begins with the developer interacting through the GUI, where they define 

the application’s components, such as microservices, data sources, and policies, by leveraging blueprints from 

the Service Catalogue and Data Catalogue. The OSR enhances this abstraction by interpreting these inputs using 

ontologies and reasoning techniques (e.g., deduction, induction), and translating them into a machine-readable 

format like RDF or OWL that captures semantic relationships and dependencies. The Application Gateway then 

consolidates this into a structured AppD (see Annex I: OSR Application Descriptors for the full AppD), which the 

AI-based LCM system uses to map to specific technologies, such as K8s manifests or Docker containers. 

In our specific UC, however, we are not currently utilising the Application Gateway or the full capabilities of the 

OSR as described, as these components have not yet been made available for use within the AC3 environment. 

Instead, the AppD has been manually crafted through close collaboration with the developers of the OSR. This 

manual process involved defining the application’s components such as microservices, dependencies, and 

resource requirements directly with the OSR team, bypassing the automated abstraction layer typically provided 

by the GUI of the Application Gateway. While this approach has allowed us to align the descriptor with our needs 

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/protocol
http://consumer:9192/management/v3/transferprocesses
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and the OSR’s semantic reasoning capabilities, it underscores the reliance on future integration of these 

components to enable a more automated workflow which will be completed by the final version of UC3. 

The AppD will be generated by the OSR through parameters provided by the application developers and is 

instrumental in facilitating the automated deployment and lifecycle management of microservices within the 

UC3 testbed. It delivers a structured specification of application components, ensuring reproducibility, scalability, 

and interoperability across the federated cloud-edge environment. This descriptor is processed by the LCM and 

converted within the adaptation and federation layer into K8s manifests, enabling the deployment of 

microservices onto the testbed clusters. 

The UC3 AppD specifies each microservice essential to the UC application, alongside the resource configurations 

necessary for their operation on a cluster. The resources required for this UC include: 

• Persistent Volumes 

• Service Accounts 

• Role bindings 

Volumes_configuration: 
  - VolumeName: "uc3-pv-volume" 

    VolumeType: "PersistentVolume" 

 

Security_configuration: 
  - ServiceAccountName: "starlight-sa" 
    ApiVersion: "v1" 

    Kind: "ServiceAccount" 

The microservices outlined in the UC3 AppD are categorized by a cluster affinity property into two deployment 

groups, promoting scalability and enabling the migration of certain microservices without impacting others. 

These microservice groups are: 

Orchestrator: 

• Data Connector - The EDC IONOS S3 Extended Consumer Data Connector ensures governance through 

contract negotiations with the provider data connector and transfers data from the UCM S3 bucket to 

the RHT S3 bucket. 

• Orchestrator - Retrieves astronomy data from the RHT S3 bucket, batches it, and forwards it to the event 

queue. 

• RabbitMQ - The event queue that transmits astronomy data as events to the processor’s event receiver. 

- MicroserviceName: "orchestrator" 
    Version: "1.0" 
    Image: "rayc/ucm-producer" 
    ID: "orchestrator" 

    ClusterAffinity: "orchestrator" 

Processor: 
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• Event receiver - Subscribes to the event queue and directs the astronomy data to the appropriate 

processing application. 

• Starlight - An astronomy application that processes data to provide astronomers with valuable insights 

into the properties of the universe. 

- MicroserviceName: "starlight" 
    Version: "1.0" 
    Image: "rayc/ucm-processor" 
    ID: "starlight" 

    ClusterAffinity: "processor" 

5.4.4 LCM 

The application LCM functionalities are implemented with the use of MAESTRO service orchestration platform 

by UBITECH. The implemented functionalities include a) the deployment of application containers according to 

end-user-defined policies using the TMF-based standardised processes of the platform [[10],[11],[12],[13]], and 

b) the runtime update of the deployed services based on information received from monitoring and the decisions 

produced through the analytics modules. MAESTRO provides a modular framework with well-defined 

standardised interfaces for easily adapting to different types of external modules related to: Management of 

end-user application requests (i.e., OSR), monitoring, analytics, and decision engines (i.e., AC3 monitoring and 

App/Resource profile engines and migration engine). Moreover, for the purpose of AC3 integration needs, 

MAESTRO southbound interface is extended to integrate with RedHat’s multi-cluster control plane (i.e., ACM) 

and multi-cluster scheduler.  

The details about the integration status of MAESTRO with respect to the two core functionalities are provided in 

the following subsections. 

5.4.4.1 Application Deployment 

The Application Gateway and OSR provide a vital abstraction layer that allows the developer to define their 

application in a way that is agnostic to the underlying technology, by ultimately generating an AppD (based on 

AC3 descriptor model) that can drive the deployment of the application. In order to anchor this to the underlying 

technological choice, it is essential to adopt a solution that can effectively translate the descriptor into the 

corresponding technology-specific implementation To this end, we have implemented an [AC3 -OSR]-to-

[MAESTRO Exposure] layer translator, that creates the K8s Manifest Files required for composing the MAESTRO 

service order according to TMF-641 [11]. As shown in the image below (Figure 39), the role of the application 

translator is to read the AC3 AppD file generated by the OSR according to the AC3 descriptor model and create 

the full set of the K8s Manifest files that essentially include all the necessary information about the containerised 

application components with their access permissions (service.yaml, role base(rb).yaml, service 

account(sa).yaml, and persistent volume(pvc).yaml files) as well as their infrastructure deployment parameters 

for the components (deployment.yaml files). Specifically, for UC3 and according to the UC3 AppD, there are in 

total 12 Manifest files that are created, 5 of which are deployment.yaml files. 
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Figure 39. Schematic representation of the OSR-to-MAESTRO Exposure translation process, in which the K8S Manifests files 

are extracted by the AC3 App Descriptor for each micro-service. 

It is noted that thanks to the clearly defined AppD model, the whole translation process can be automated, and 

the MAESTRO Service Ordering process can be initiated directly once a valid  AppD is received from the AC3 -OSR. 

In this case, the creation and submission of the  AppD to the MAESTRO LCM has the direct meaning of a 

deployment request and can be controlled by the Front-End GUI that provides the initial high-level end-user 

requests.  

The subsequent step involves ordering the service through RedHat's multi-cluster control plane, ACM. To 

efficiently orchestrate application deployments, MAESTRO and ACM employ a sophisticated label-based routing 

mechanism to accurately determine the appropriate target cluster, such as, for instance, an OpenShift cluster, a 

standard K8s cluster, or a cluster with specialized resources like dedicated CPUs, among others. In essence, labels 

can be used to define and identify any cluster characteristic and capability. This enables MAESTRO, in conjunction 

with ACM, to intelligently distribute application deployments across the entire cluster continuum, based on the 

specific requirements and characteristics of each microservice of the application. This determination is 

performed by retrieving location-specific labels through metadata fields exposed by the MAESTRO TM Forum 

(TMF) APIs. Once the appropriate cluster target is identified, MAESTRO proceeds to transform the standard K8s 

resource definitions into specialized “CustomManifestWork” resources, fully compatible with RedHat’s ACM 

Hub. These custom resources encapsulate the detailed deployment instructions required by the control plane to 

effectively manage multi-cluster deployments. Deployment requests generated by this translation process are 

subsequently dispatched to their designated clusters via RedHat's ACM Hub, ensuring a centralized and 

streamlined deployment procedure.  
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The overall workflow described above is depicted below in Figure 40. It begins with the end user, who provides 

the AppD (left side of the diagram). The Application Translator then generates the corresponding K8s manifest 

files and pushes them to the AC3 registry. Following this, a CI/CD pipeline is triggered to activate the Request 

Generator mechanism (optionally, it may also invoke the Package Generator mechanism). The Request 

Generator builds the complete order according to the TMF service order standard and also enriches the metadata 

field with labels to define the application needs (per service). These labels are subsequently used by ACM to 

distribute the application deployment intelligently across the clusters, as explained previously. Finally, the 

MAESTRO Service Engine is initiated in order to transform the K8s Manifest files to the proper resources, namely, 

CustomManifestWork resources, and to dispatch the request to the ACM Hub. In the last stage of the process, 

the ACM hub forwards the deployments to the edge site clusters. Figure 41 presents a UC3-specific example of 

the label-based process for creating the CustomManifestWork. 

 

Figure 40. Process workflow for the deployment of an AC application request from the OSR translation point to the 

interfacing with ACM 

 

Figure 41. Schematic representation of the CustomManifestWork creation from the Manifest files and the combination of 

cluster metadata using a cluster labelling scheme. 
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5.4.4.2 Application Adaptation 

MAESTRO is capable of integrating monitoring systems into its process and orchestrating feedback loops, 

enabling continuous LCM for each deployment. This ensures visibility, operational reliability, and efficient 

resource management throughout the service lifecycle. 

It is noted that at the time of editing this deliverable, the interconnections between the components of the 

different AC3 layers, as well as the integration steps have been defined, as shown in Figure 42 but the integration 

is not yet complete, since a) the MAESTRO platform runtime processes are currently updated to be able to handle 

custom metrics in a modular and well defined method) while offering standardised connection interfaces to the 

monitoring modules, and b) the AC3 decision engines for the App and Resource profile in WP3 and WP4 require 

to be finalised and adjusted to the platform requirements. The work is planned for the second phase of the 

integration process, following the UC3 deployment phase. 

Diving deeper into the LCM aspect of this specific UC, Figure 42 presents the control plane architecture, which 

has been designed to manage the complete lifecycle of applications across the distributed edge computing 

environment. Based on the three main layers of AC3, the process begins at the upper layer (namely Application 

Composition and onboarding), where the end user includes in their request the SLA metrics as part of the 

application specifications. The App translator then will a) create the proper HPA resources and b) dispatches both 

the SLA metrics and the Horizontal Pod Autoscaler (HPA) resources to MAESTRO. Subsequently, MAESTRO 

updates the External Metrics API and Custom Metrics API of each cluster to enable the provisioning of custom 

metrics for any HPA resource. To support this, MAESTRO is integrated with Prometheus, which is responsible for 

collecting and retrieving custom metrics generated by the AC3 AI LCM algorithms and 

For each new custom metric, MAESTRO dynamically creates a ConfigMap that defines how the metric should be 

exposed to the K8s Custom Metrics or External Metrics APIs. As a result, HPA controllers within the clusters can 

retrieve these metrics and act upon them, enabling continuous and efficient intra-cluster lifecycle management. 

Last but not least, it is important to note that end users can continuously monitor the status of their applications 

along with the associated metrics, and they are able to update the initial deployment request at any time, for 

example, by modifying the metrics that drive autoscaling or adjusting the initial resource limit requests for each 

service. This architecture effectively extends the default K8s autoscaling mechanism, which is traditionally 

limited to CPU and memory, by introducing a dynamic, SLA-aware autoscaling strategy driven by external and 

application-specific metrics. 
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Figure 42. The MAESTRO LCM architecture adapted to the AC3 architecture 

Figure 43 illustrates in detail how the custom metric exposure process works and how the AC3 AI LCM mechanism 

can inject its metrics into the system, enabling the creation of closed-loop adaptation systems, utilizing HPA 

resources, for each deployment. 

In detail: 

    1. The user initiates a request to deploy an application, specifying the custom metric that should guide the 
LCM logic. 

    2. The MAESTRO creates a) the Prometheus adapter ConfigMaps and b) the HPA resources, that map each 
deployment with each custom metric. These resources are then deployed to the relevant clusters by the ACM 
scheduler. The Prometheus Adapter ConfigMap defines how the adapter will translate those metrics into K8s-
readable custom metrics. The key config values there are:  

        a. “SeriesQuery”: Specifies which metric series should the adapter query from in Prometheus 

        b. “metricsQuery”:  Defines how to aggregate or process the data (avg, sum etc.) 

        c. “name”: Sets the name what will be exposed the custom metric via K8s Metrics or External API. 

    3. Prometheus collects those metrics from AI LCM mechanisms. 

    4. Prometheus Adapter queries Prometheus using the rules defined in the ConfigMap. 

    5. The Prometheus Adapter configures K8s Custom Metrics API (“/apis/custom.metrics.k8s.io”) or External 
Metrics API (“/apis/external.metrics.k8s.io”) to exposes the retrieved metrics. 

    6. Finally, HPA resources query the K8s metrics API to retrieve the custom metric values and make scaling 
decisions based on the thresholds defined by the user during the initial application request. 
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Figure 43. Custom metric exposure process and metrics injection into the system 

 

5.4.4.3 AI LCM algorithms  

In terms of AI-LCM algorithms, at this stage the core focus has been on exploring the most appropriate AI 

algorithms to integrate into this UC integration design. In particular, we are focusing on 2 core AI-enabled 

approaches under development within the project: 

The XAI-enabled auto-scaler ML model, in development in WP4, can predict application QoS violations and use 

this to trigger corrective actions. Specifically, it monitors application CPU and RAM usage relative to application 

limits and uses this to predict when we need to make interventions. An XAI model also indicates the contribution 

of each feature to the prediction (E.g., CPU/RAM), enabling targeted mitigation of the issue. As part of this work, 

the Decision Engine utilises vertical autoscaling to increase the CPU or RAM for the application in question. 

We are also considering, given the nature of the Astronomy processing application architecture, whether CPU 

and RAM provide accurate reflections of workload, given that we are using a work/event dispatching model. 

Instead, we are exploring using additional metrics that consider the incoming workload, which may be a better 

prediction of potential bottlenecks in the system. For instance, queue length and average batch processing times 

should provide a more accurate reflection of the workload. 

We are also considering using the same algorithm for predicting QoS violations in order to mitigate the predicted 

performance issues via horizontal autoscaling. Using the predictions from the ML model, instead of vertically 

autoscaling, we can look to increase the number of Processor Pods in the system, in order to increase concurrent 

data processing. This work aims to utilise Maestro and the Horizontal Pod Autoscaling capability within K8s. 

Where specific SLA metrics are required by an application, we can convert these to HPA resources to monitor 

these SLA and automatically trigger scaling. 

Building on this foundation, we are integrating AI-LCM algorithms into the batch processing workflow to further 

enhance the scalability of the astronomy data processors. While CPU and RAM usage remain under monitoring, 

the work/event dispatching model employed in our UC suggests these metrics may not fully reflect workload 

demands. To address this, we are incorporating RabbitMQ queue length as a more robust indicator of system 

load. Astronomy data batches are queued in RabbitMQ for processing by the RHT Orchestrator. The resulting 

queue length, representing unprocessed batches, is collected and analysed. This data is fed into an XGBoost-

based ML model, which predicts potential performance degradation, such as elevated workload queues. 
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These predictions are then leveraged to inform scaling decisions through the K8s HPA. When the XGBoost model 

anticipates an SLA violation due to excessive queue length, the HPA responds by increasing the number of 

processor pods. For example, it might scale from 2 to 4 pods to distribute the workload and accelerate 

processing. Conversely, should the queue length fall below a lower threshold, such as 10 batches, the HPA 

reduces the pod count to optimise resource utilisation. This AI-driven mechanism ensures that the astronomy 

data processors adapt dynamically to workload fluctuations, maintaining performance efficiency while adhering 

to SLA commitments. 

Finally, we also want to include multi-cluster replication/stateless migration in our UC execution. This would 

enable Processor pods with constrained resources or excessive workloads to scale not just locally (within the 

same cluster) but also cross-cluster, in order to exploit resource availability in other clusters. Since every 

event/batch is discrete, the Processors operate statelessly, so the work in WP3 focused on stateful migration 

may not be fully exploitable. However, we are examining whether their work on resource prediction, utilising a 

LSTM-based machine learning algorithm could be leveraged to trigger stateless pod migration.  

 

5.4.5 Monitoring 

5.4.5.1 Monitoring Framework Integration 

To get visibility across our distributed architecture, we require a monitoring solution that can provide real-time 

insights, scale across our multi-cluster environment, and support long-term metric retention. This is where our 

integration with the monitoring framework devised under WP4, based on Prometheus and Thanos, comes into 

play. 

In OpenShift, Prometheus is deployed and managed by default using the platform’s built-in Monitoring Operator. 

This operator handles both the deployment and ongoing lifecycle of Prometheus, ensuring that it continuously 

scrapes metrics from cluster components as well as application-level metrics exposed by workloads running 

within the cluster. In a federated cluster environment, Prometheus instances are tailored to focus on local metric 

collection. These metrics are then forwarded to a central aggregation point using the remote_write feature, 

which allows for efficient grouping and transfer of data. 

To enable centralized observability and long-term retention, Prometheus is integrated with Thanos. Each 

Prometheus instance is configured with remote_write to push metrics to the Thanos Receiver. This setup allows 

Thanos to act as a centralized storage and query layer, sending metrics from all participating sites. As a result, 

users gain a unified view of metrics across the entire multi-site deployment, with access to historical data and 

advanced querying capabilities through tools like Thanos Querier or Grafana. This architecture not only improves 

monitoring consistency across sites but also ensures that valuable metrics are retained and made accessible 

beyond the lifespan of any individual Prometheus pod or cluster. 

kind: ConfigMap 
apiVersion: v1 
metadata: 
  name: user-workload-monitoring-config 
  namespace: openshift-user-workload-monitoring 
  uid: 186780e5-bf5d-4bed-bde5-621a5635bd71 
  resourceVersion: '524193793' 
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  creationTimestamp: '2024-03-08T10:40:32Z' 
managedFields: 
  - manager: hypershift-operator-manager 
    operation: Update 
    apiVersion: v1 
    time: '2025-03-03T12:18:46Z' 
    fieldsType: FieldsV1 
    fieldsV1: 
      'f:data': 
        .: {} 
      'f:config.yaml': {} 
data: 
  config.yaml: | 
    prometheus: 
      remoteWrite: 
      - url: http://82.223.13.241:10908/api/v1/receive 
        authorization: 
          credentials: 
            key: token 
            name: telemetry-remote-write 
          type: Bearer 
        queueConfig: 
          batchSendDeadline: 1m 
          capacity: 30000 
          maxBackoff: 256s 
          maxSamplesPerSend: 10000 
          minBackoff: 1s 
      url: https://infogw.api.openshift.com/metrics/v1/receive 

      writeRelabelConfigs: 

Figure 44. Visual representation of Our monitoring Config with our Thanos URL inserted 

OpenShift inherently provides automatic service discovery for Prometheus, which detects and scrapes metrics 

from applications and network components, including Skupper. Prometheus collects metrics from K8s services 

and pods that are managed by OpenShift, making it easy to monitor the infrastructure and deployed applications. 

Prometheus is currently running within OpenShift and actively monitoring metrics for both the cluster and 

applications. The Thanos Receiver is properly configured and is successfully aggregating metrics from multiple 

clusters. In addition, the RabbitMQ exporter is operational, allowing the collection and visualization of 

application-specific metrics. Federation between Prometheus instances is set up, enabling the central 

Prometheus instance to collect metrics from edge clusters, thus ensuring centralized monitoring. 

5.4.5.2  Monitoring Metrics 

Within UC3 there is a range of metrics that we want to leverage the monitoring framework to export. Many of 

these fall into the range of metrics defined in D4.1, covering standard metrics such as CPU, RAM, bandwidth, and 

latency. However, we are also working to export additional metrics relating to the specific architecture of our 

application. In Figure 45 below, we visualise the batch processing time metric and its constituent metrics. In 

essence, the queue length of the application is key to understanding the overall load of the entire application 

(not just a single processor) and to predicting the future load of each individual processor. We are exploring 

http://82.223.13.241:10908/api/v1/receive
https://infogw.api.openshift.com/metrics/v1/receive
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integrating these metrics into the ML algorithms to give more accurate predictions of SLA violations based on 

this queue length.  

 

 

Figure 45. Batch Processing Time based on queue length 

5.4.6 Compute LMS 

To deliver the functionality of Compute LMS we exploit 2 core technologies, namely OpenShift (K8s) and ACM. 

OpenShift provides us with the capability of not just deploying and orchestrating workloads, but with a 

comprehensive platform to support resource provisioning such as CPU, RAM, Storage and Networking. OpenShift 

is a key component in supporting the scalability and resilience required for the core astronomy processing 

application in UC3. This allows the pre-existing processing applications (Starlight, PPXf, Steckmap) to be packaged 

as K8s applications, enabling them to be seamlessly and comprehensively managed (deployed, moved, removed, 

and scaled). It also provides an application eco-system where additional software components are available and 

easily deployable, such as the RabbitMQ message broker utilised as part of this UC. Another advantage of this is 

its ability to work in harmony with the AC3 network Operator. Unlike relying solely on OpenShift’s native 

operators, the AC3 network operator is specifically designed to expose the application in a way that aligns with 

the unique requirements of the UC3 project. OpenShift’s flexibility allows for the smooth deployment and 

operation of this network operator without imposing limitations on how external access is managed. This level 

of customization is crucial, as it allows the team to maintain control over how the application is accessed across 

the network, ensuring that the RabbitMQ queues and Starlight processing endpoints are reachable as needed.  

In the context of UC3, we utilise multiple OpenShift clusters to represent federated infrastructures that are 

available to the Astronomer (via AC3) to carry out their data processing. Within the OpenShift/K8s ecosystem, 

there are additional add-on components that cater to multi-cluster management. In this case, we utilise the 

Advanced Cluster Management add-on, based on the Cloud Native Computing Foundation Open Cluster 

Management project. ACM helps streamline the management of our multi-cluster setup, ensuring that all 

clusters are consistently monitored, maintained, and configured according to the project's needs. In particular, 

the workload placement capability of ACM offers us a central control point where we can deploy applications 
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across clusters, utilising an expressive set of rules to find the appropriate clusters or target a specific cluster. 

Also, the Policy construct allows for consistent and unified governance of the managed clusters, ensuring that 

each cluster, including newly added clusters, conforms to the required configuration.  

5.4.7  Network LMS 

Playing the role of Network LMS within this UC is the AC3 Network Operator developed in WP4. The goal of the 

network operator is to establish and manage connectivity between multiple K8s clusters in a dynamic way, 

leveraging a range of underlying network technologies. Leveraging the operator allows us to form a cohesive 

virtual application network where services and workloads can communicate across physical infrastructure 

boundaries. 

In our UC testbed, we currently have 1 management cluster (Hub) and 2 application clusters representing 
individual infrastructure domains. The Network Operator is installed on the Hub cluster and is responsible for 
orchestrating the network configuration required to ensure inter-site connectivity. The operator automates the 
setup of our network by managing the lifecycle of connection tokens, distributing secrets, and creating links that 
connect edge sites to the central hub. 

apiVersion: ac3.redhat.com/v1alpha1  
kind: AC3Network  
metadata:  
name: ray-ac3network  
namespace: ac3no  
spec:  
link:  
sourceCluster: "ac3-cluster-2"  
targetCluster: "ac3-cluster-1"  
sourceNamespace: "sk1"  
targetNamespace:   
- "sk3"  
applications:  
- "nginx"  
- "rabbitmq"  
secretNamespace: "sk1"  
secretName: "sk1-token"  
secretName2: "sk1-token"  

port: 5672 

The Network operator establishes a secure communication between clusters, and the central site containing the 

network operator generates a token. This token is used by our federated sites. This will enhance the workflow 

by automating token distribution and secret management. Once the inter-site links are in place, the operator 

maintains these connections and ensures that they are kept in sync as sites scale or update over time. 

Applications deployed with the Network Operator are automatically exposed to the virtual application network. 

This allows services running on one site to be discovered and accessed from any other site that is linked through 

Skupper, a visual representation of which can be seen in Figure 46. The exposure configuration is handled by the 

operator, which ensures consistent and reliable cross-cluster communication without requiring manual routing 
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rules or service mirroring configurations. This significantly reduces operational overhead and enables multi-site 

deployments to be managed in a declarative and scalable way. 

User Interface:  

 

Figure 46. Visual representation of Skupper links between namespaces/clusters 

One of the key technical challenges in this setup is ensuring proper synchronization between central and cross 

cluster sites—especially as updates and configuration changes are made centrally and need to propagate across 

the network. This includes both the consistency of routing information and the reliable rollout of service 

exposure configurations. Managing traffic flow between multiple edge sites also presents challenges around load 

balancing and routing efficiency. As the number of interconnected sites grows, it becomes increasingly important 

to monitor how traffic is distributed to avoid bottlenecks or uneven load. In addition, automated failover remains 

a core focus, with efforts underway to support seamless rerouting if an inter-site link fails or a node becomes 

temporarily unavailable. 

The multi-site setup has been successfully deployed and validated, with a reliable interconnection established 

between the central and multi-cluster sites. Applications deployed through the Network Operator are correctly 

exposed and accessible across the network. Dynamic updates, such as the addition of new sites or the 

reconfiguration of existing links, have been tested and confirmed to propagate as expected. The system 

demonstrates strong resilience and flexibility, adapting to topology changes during runtime. 

5.4.8 Remaining Integration 

5.4.8.1 PPXF and STECKMAP Astronomy Software 

While the UC3 application is designed to process astronomical data using various tools, including pPXF and 

STECKMAP, the complete integration of both software components into the UC3 application's processing 

workflow is still pending. This integration is vital to expand the UC3 application's ability to process multiple types 

of astronomical data effectively. It will involve ensuring the Orchestrator can correctly identify, configure, and 
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dispatch data specifically formatted for each tool, and that their respective outputs are seamlessly handled and 

stored. This integration will enable astronomers to leverage the UC3 application for a broader range of data 

analysis needs, maximising its utility for diverse astronomical datasets. 

5.4.8.2 Finalizing Metrics for Autoscaling Model 

While the monitoring framework, using Prometheus and Thanos, collects a broad range of system and 

application metrics, the specific metrics vital for the AI-driven autoscaling model still need to be integrated. For 

the UC3 application, traditional CPU and RAM usage might not fully capture the workload. As such, we are 

focusing on seamlessly integrating RabbitMQ queue length as an indicator of system load alongside average 

batch processing and wait times. This involves refining Prometheus configurations to reliably expose these 

specific application metrics and ensuring their smooth ingestion by the AI-LCM for both training and real-time 

inference. The next step is confirming that the HPA effectively consumes these custom metrics, creating an 

adaptation system driven by meaningful workload indicators. 

5.4.8.3 AI Algorithms 

The critical phase of training the AI algorithms on actual UC3 application data and their subsequent 

programmatic integration with the LCM system remains. This requires collecting sufficient, representative 

datasets from the UC3 application, particularly data correlating queue length and processing times with 

performance degradation. The trained XGBoost model will then need integration within the AI-LCM mechanisms, 

ensuring it can process real-time queue length data and generate accurate predictions of impending SLA 

violations. The final part of this integration involves establishing the automated pipeline for these predictions to 

directly inform and trigger scaling decisions via the K8s HPA, orchestrated by Maestro. This will enable the system 

to proactively adjust processor pod counts, ensuring dynamic adaptation to maintain performance efficiency and 

SLA compliance. 

5.4.8.4 Maestro (LCM) 

Maestro is currently running on Ubitech infrastructure and has yet to be deployed onto the AC3 testbed. Another 

key outstanding task is updating Maestro's runtime processes to handle custom metrics like the RabbitMQ queue 

length to effectively leverage the performance indicators and predictions from the monitoring framework and 

AI-LCM algorithms. Furthermore, Maestro must be configured to effectively utilise the outputs from the 

application and resource profiling decision engines from WP3 and WP4. These profiles will provide interpreted 

metrics and AI predictions to Maestro, driving its scaling and adaptation decisions. The completion of this phase 

will allow Maestro to fully orchestrate dynamic runtime updates and autoscaling of deployed services based on 

real-time feedback and AI insights. 

5.5 UC3 Integration summary 
Table 5: UC3 Integration summary 

Architecture component  Sub-Component  Description    Integration summary 

Application gateway 
(GUI)    

    
Allow the application developer to 
define its application components 
and SLA.     

Complete 

OSR    Allow the generation of the AppD  Complete 
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Network LMS      
Connects the OpenShift clusters 
running on the ARS cloud  

Complete 

Application and resource 
management    

Monitoring    
Monitors application and resource 
metrics  

In Progress  

AI-based LCM   
and Decision 
Enforcement  

1. Manage the micro-services Life 
Cycle   

2. Horizontal autoscaling  

1. In Progress 

2. In Progress 

Zero Touch Configuration: Predict 
and describe infrastructure 
resources and implementation of 
automated corrective measures.  

In Progress  

AI-Based 
application profile    

Predicting application behavior  In Progress  

AI-Based Resource 
Profile  

Describe the resources of the 
infrastructure  

In Progress  

Data management  

1. Data Provider 
connector  
2. Catalogue (data)  
3. Data 
Manipulator  

1. Astronomy data goes through 
the Data connector  
2. Registers with the AC3 
Catalogues (Piveau)  
3. Manipulate data for input to 
Orchestrator  

1. Complete 

2. Complete 

3. Complete  

Migration    

1. Manages dynamic microservice 
migration across cloud and edge.  
2. Moves microservices between 
clusters based on real-time data.  
3. Balances loads and avoids 
bottlenecks.  

1. Not Started 

2. Not Started 

3. Not Started  
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6 Conclusions 

The objective of deliverable D5.2 was to capture the interim status of the work done across tasks T5.1 (AC3 

components integration) and T5.2 (Testbed Integration). We believe that, through the detailed account of each 

UC application and testbed architectures, UC integration design, as well as the thorough technical description of 

the implementation carried out, this intermediate report on integration successfully captures the extensive work 

that has been completed towards achieving our goal of a cohesive and highly effective AC3 system. 

• In UC1, significant progress has been made in integration of key components such as the Data 

Managment and Dat Connectors, Service Catalogue, AppD, OSR and LCM.  

• In UC2, significant progress has been made in the core application and application UI, as well as 

integration of key components such as the Application Gateway, OSR/AppD and LCM 

• In UC3, work is complete/nearing completion on the core application for data orchestration and analysis, 

as well as integration of key components such as the Data Connectors, Monitoring Framework and 

AppD/OSR, as well as the Compute and Network LMS. Work is actively progressing on LCM and AI 

integration. 

To finalize the integration across all UCs, further efforts will concentrate on the remaining components: 

• For UC1, this primarily involves the full integration of the Application Gateway, LMS Edge/Cloud, the 

advanced AI-based LCM, AI-based profiling, Monitoring functionalities, and the initiation of Zero-touch 

configuration.  

• UC2 will focus on completing the AI-based LCM and Decision Enforcement, Zero-touch configuration for 

drone availability, and the AI-based Application and Resource Profiling.  

• For UC3, the key remaining tasks include finalizing the Monitoring integration, AI-based LCM, Zero Touch 

Configuration, and AI-Based profiles.  

These final integration steps, detailed in the respective UC sections, are essential to achieve the complete vision 

and capabilities of the CECCM. 

As a result of the extensive collaboration between the UC and component owners, we believe a clear path to 

realising the AC3 vision is now in place. Based on the strong foundational work described within this report, the 

consortium can now progress towards delivering tangible benefits of the CECCM through demonstrations, 

experimentation and results within the final phase of the project. 
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8 Annex I: OSR Application Descriptors 

This Annex provides a view of the complete OSR AppD for each UC. 

 

UC1 OSR Application Descriptor 
ApplicationName: "UC1 IoT Data Processing" 

Version: "3.0" 

 

Microservices_configuration: 

  - MicroserviceName: "edgebroker" 

    Version: "0.3" 

    Image: "sparkworks/ac3-edge-broker:0.3" 

    ID: "edgebroker" 

    EnvironmentVariables: 

      - Name: "RABBITMQ_HIPE_COMPILE" 

        Value: "1" 

 

  - MicroserviceName: "logger" 

    Version: "latest" 

    Image: "sparkworks/ac3-amqp-http-request-logger:latest" 

    ID: "logger" 

    Ports: 

      - "4000:4000" 

    EnvironmentVariables: 

      - Name: "HTTP_SERVER_PORT" 

        Value: "4000" 

 

  - MicroserviceName: "consumer" 

    Version: "latest" 

    Image: "sparkworks/ac3-connector-http-http-consumer:latest" 

    ID: "consumer" 

    Ports: 

      - "28180:28180" 

      - "28181:28181" 

      - "28182:28182" 

      - "28183:28183" 

    EnvironmentVariables: 

      - Name: "WEB_BASE_URL" 

        Value: "http://ionos-s1.sparkworks.net" 

      - Name: "WEB_HTTP_PORT" 

        Value: "28180" 

      - Name: "WEB_HTTP_MANAGEMENT_PORT" 

http://ionos-s1.sparkworks.net/
http://ionos-s1.sparkworks.net/
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        Value: "28181" 

      - Name: "WEB_HTTP_PROTOCOL_PORT" 

        Value: "28182" 

      - Name: "WEB_HTTP_CONTROL_PORT" 

        Value: "28183" 

      - Name: "ASSET_NAME" 

        Value: "uc1-stream" 

      - Name: "PROVIDER_DOMAIN" 

        Value: "http://ds.uc1.ac3.sparkworks.net:18182/protocol" 

 

  - MicroserviceName: "edgemapper" 

    Version: "0.5" 

    Image: "sparkworks/sw-mapper-ac3:0.5" 

    ID: "edgemapper" 

    Ports: 

      - "5026:5026" 

      - "8026:8026" 

    EnvironmentVariables: 

      - Name: "RABBITMQ_PORT" 

        Value: "5672" 

      - Name: "RABBITMQ_HOST" 

        Value: "edgebroker" 

      - Name: "RABBITMQ_USERNAME" 

        Value: "mapperuc1" 

      - Name: "RABBITMQ_PASSWORD" 

        Value: "TmU5WmuikTQnDrWkRs7D" 

      - Name: "QUEUE_OUT" 

        Value: "mapperuc1.mapped" 

      - Name: "QUEUE_IN" 

        Value: "mapperuc1.data" 

      - Name: "QUEUE_COMMANDS" 

        Value: "mapperuc1.commands" 

 

  - MicroserviceName: "edgeapplication" 

    Version: "0.4" 

    Image: "sparkworks/data_manipulator_uc1:0.4" 

    ID: "edgeapplication" 

    ResourceRequirements: 

      Cpu: "4 vCPUs" 

      Memory: "8Gi" 

    ReplicaCount: "1" 

    Ports: 

      - "5001:5001" 

http://ds.uc1.ac3.sparkworks.net:18182/protocol
http://ds.uc1.ac3.sparkworks.net:18182/protocol
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    EnvironmentVariables: 

      - Name: "RABBITMQ_PORT" 

        Value: "5672" 

      - Name: "RABBITMQ_HOST" 

        Value: "edgebroker" 

      - Name: "RABBITMQ_USERNAME" 

        Value: "ml" 

      - Name: "RABBITMQ_PASSWORD" 

        Value: "7Iqk7uu1Ot" 

      - Name: "QUEUE_OUT" 

        Value: "mapperuc1.processed.ml" 

      - Name: "QUEUE_IN" 

        Value: "mapperuc1.mapped.ml" 

 

  - MicroserviceName: "edgeapplication-2" 

    Version: "0.4" 

    Image: "sparkworks/data_manipulator_uc1-2:0.4" 

    ID: "edgeapplication-2" 

    ResourceRequirements: 

      Cpu: "4 vCPUs" 

      Memory: "8Gi" 

    ReplicaCount: "1" 

    Ports: 

      - "5005:5001" 

    EnvironmentVariables: 

      - Name: "RABBITMQ_PORT" 

        Value: "5672" 

      - Name: "RABBITMQ_HOST" 

        Value: "edgebroker" 

      - Name: "RABBITMQ_USERNAME" 

        Value: "ml" 

      - Name: "RABBITMQ_PASSWORD" 

        Value: "7Iqk7uu1Ot" 

      - Name: "QUEUE_OUT" 

        Value: "mapperuc1.processed.ml" 

      - Name: "QUEUE_IN" 

        Value: "mapperuc1.mapped.ml-2" 

 

Global_SLA: 

  ServiceAvailability: "99.9%" 

  MaxLatency: "500 ms" 

  MaxResponseTime: "Low" 

  DataThroughput: "High" 
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UC1 AppD 

 

UC2 OSR Application Descriptor 
ApplicationName: "Surveillance System" 

Version: "1.0.0" 

 

Microservices_configuration: 

  - MicroserviceName: "backend" 

    Version: "1.0" 

    Image: "capy8ra/ac3-uc2-backend:latest" 

    ID: "backend" 

    Dependencies: 

      - "database" 

    ResourceRequirements: 

      Cpu: "4 vCPU" 

      Memory: "8Gi" 

    MicroservicesSLAs: 

      ServiceAvailability: "99.9%" 

      MaxResponseTime: "Low" 

      DataThroughput: "High" 

    ReplicaCount: "1" 

    EnvironmentVariables: 

      - Name: "DJANGO_DEBUG" 

        Value: "False" 

      - Name: "LOGGING_LEVEL" 

        Value: "INFO" 

      - Name: "DB_HOST" 

        Value: "db" 

      - Name: "DB_PORT" 

        Value: "5432" 

      - Name: "DB_NAME" 

        Value: "ac3" 

      - Name: "DB_USER" 

        Value: "postgres" 

      - Name: "DB_PASS" 

        Value: "root" 

      - Name: "RECAPTCHA_SECRET_KEY" 

        Value: "6LfUgiEqAAAAADM04T7V8GNTL6VCvWtW_UJDIx0J" 

    apiEndpoint: "http://backend.fingletek.com" 

    apiPort: "8000" 

    Protocol: "HTTP/REST" 

http://backend.fingletek.com/
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    InternetAccess: "true" 

   

    GeographicalArea: 

      Region: "Central Cloud" 

      LocationType: "cloud" 

 

  - MicroserviceName: "frontend" 

    Version: "1.0" 

    Image: "capy8ra/ac3-uc2-frontend:latest" 

    ID: "frontend" 

    Dependencies: 

      - "backend" 

      - "deepstream" 

    ResourceRequirements: 

      Cpu: "1 vCPU" 

      Memory: "2Gi" 

    MicroservicesSLAs: 

      ServiceAvailability: "99.9%" 

      MaxResponseTime: "Low" 

      DataThroughput: "High" 

    ReplicaCount: "1"  

    EnvironmentVariables: 

      - Name: "VITE_USER_SERVICE_URL" 

        Value: "http://172.21.16.156:30033/api/v1"  

      - Name: "VITE_USER_SERVICE_BASE_URL" 

        Value: "http://172.21.16.156:30033"  

      - Name: "VITE_REACT_APP_SITE_KEY" 

        Value: "6LfUgiEqAAAAAKWzfsVqrlI6YbpXgUZde85ip3z-" 

    apiEndpoint: "http://frontend.fingletek.com" 

    apiPort: "5173"  

    Protocol: "HTTP/REST" 

    InternetAccess: "true" 

 

    GeographicalArea: 

      Region: "Central Cloud" 

      LocationType: "cloud" 

 

  - MicroserviceName: "deepstream" 

    Version: "1.1.0" 

    Image: "capy8ra/ac3-uc2-ds:28" 

    ID: "deepstream" 

    Dependencies: 

      - "backend" 

http://172.21.16.156:30033/api/v1
http://172.21.16.156:30033/
http://frontend.fingletek.com/
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      - "database" 

    ResourceRequirements: 

      Cpu: "4 vCPUs" 

      Memory: "16Gi" 

      Storage: "N/A" 

      Gpu: "NVIDIA GPU (specific model based on throughput)" 

    MicroservicesSLAs: 

      ServiceAvailability: "99.9%" 

      MaxResponseTime: "Low" 

      DataThroughput: "High" 

    ReplicaCount: "1"   

    EnvironmentVariables: 

      - Name: "LOG_LEVEL" 

        Value: "INFO" 

      - Name: "DB_HOST" 

        Value: "db" 

      - Name: "DB_PORT" 

        Value: "5432" 

      - Name: "DB_NAME" 

        Value: "ac3" 

      - Name: "DB_USER" 

        Value: "postgres" 

      - Name: "DB_PASSWORD" 

        Value: "root" 

      - Name: "NO_DISPLAY" 

        Value: "1"   

    Protocol: "TCP/RTSP" 

    InternetAccess: "false"   

 

    GeographicalArea: 

      Region: "Edge" 

      LocationType: "edge" 

 

  - MicroserviceName: "db" 

    Version: "8.1.0" 

    Image: "postgres:17" 

    ID: "database" 

    ResourceRequirements: 

      Cpu: "0.2 vCPU" 

      Memory: "256MB" 

      Storage: "10GB" 

    MicroservicesSLAs: 

      ServiceAvailability: "99.9%" 
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      MaxResponseTime: "Low" 

      DataThroughput: "High" 

    ReplicaCount: "3" 

    EnvironmentVariables: 

      - Name: "POSTGRES_USER" 

        Value: "postgres" 

      - Name: "POSTGRES_PASSWORD" 

        Value: "root" 

      - Name: "POSTGRES_DB" 

        Value: "ac3" 

    apiEndpoint: "psql://database.fingletek.com" 

    apiPort: "5432" 

    Protocol: "TCP" 

    InternetAccess: "false" 

 

    GeographicalArea: 

      Region: "Central Cloud" 

      LocationType: "cloud" 

 

Networking_graph: 

  - Source: "backend" 

    Destination: "db" 

    Protocol: "TCP" 

    Port: "5432"   

    ConnectionSLAs: 

      Latency: "Less than 500 ms" 

      Availability: "99.9%" 

      Bandwidth: "High" 

      ErrorRate: "Less than 1%" 

 

  - Source: "frontend" 

    Destination: "deepstream"   

    Protocol: "TCP" 

    Port: "8585"   

    ConnectionSLAs: 

      Latency: "Less than 500 ms" 

      Availability: "99.9%" 

      Bandwidth: "High" 

      ErrorRate: "Less than 1%" 

 

  - Source: "frontend" 

    Destination: "backend" 

    Protocol: "TCP" 
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    Port: "8000"   

    ConnectionSLAs: 

      Latency: "Less than 500 ms" 

      Availability: "99.9%" 

      Bandwidth: "High" 

      ErrorRate: "Less than 1%" 

 

Global_SLA: 

  ServiceAvailability: "99.9%" 

  MaxLatency: "500 ms" 

  MaxResponseTime: "Low" 

  DataThroughput: "High" 

UC2 AppD 

 

UC3 OSR Application Descriptor  

ApplicationName: "starlight-uc3" 

Version: "1.0.0" 

 

Volumes_configuration: 

- VolumeName: "uc3-pv-volume" 

VolumeType: "PersistentVolume" 

StorageClass: "standard" 

Capacity: "10Gi" 

AccessModes: 

- "ReadWriteOnce" 

HostPath: 

Path: "/mnt/ucmdata" 

ClaimName: "uc3-pv-claim" 

ClaimSpec: 

StorageClassName: "standard" 

AccessModes: 

- "ReadWriteOnce" 

Resources: 

Requests: 

Storage: "3Gi" 

 

Security_configuration: 

- ServiceAccountName: "starlight-sa" 
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ApiVersion: "v1" 

Kind: "ServiceAccount" 

Metadata: 

Name: "starlight-sa" 

- RoleBindingName: "privileged-role" 

ApiVersion: "rbac.authorization.k8s.io/v1" 

Kind: "RoleBinding" 

Metadata: 

Name: "privileged-role" 

RoleRef: 

ApiGroup: "rbac.authorization.k8s.io" 

Kind: "ClusterRole" 

Name: "system:openshift:scc:privileged" 

Subjects: 

- Kind: "ServiceAccount" 

Name: "starlight-sa" 

 

Microservices_configuration: 

- MicroserviceName: "rabbitmq" 

Version: "3-management" 

Image: "rabbitmq:3-management" 

ID: "rabbitmq" 

ClusterAffinity: "orchestrator" 

Dependencies: [] 

ResourceRequirements: 

Cpu: "0.5 vCPU" 

Memory: "1Gi" 

MicroservicesSLAs: 

ServiceAvailability: "99.9%" 

MaxResponseTime: "N/A" 

DataThroughput: "Medium" 

ReplicaCount: "1" 

Ports: 

- ContainerPort: "5672" 

- ContainerPort: "15672" 

EnvironmentVariables: 

- Name: "RABBITMQ_DEFAULT_USER" 

Value: "guest" 
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- Name: "RABBITMQ_DEFAULT_PASS" 

Value: "guest" 

 

- MicroserviceName: "orchestrator" 

Version: "1.0" 

Image: "rayc/ucm-producer" 

ID: "orchestrator" 

ClusterAffinity: "orchestrator" 

Dependencies: 

- "rabbitmq" 

ResourceRequirements: 

Cpu: "2 vCPU" 

Memory: "4Gi" 

MicroservicesSLAs: 

ServiceAvailability: "99.9%" 

MaxResponseTime: "N/A" 

DataThroughput: "High" 

ReplicaCount: "1" 

ServiceAccountName: "starlight-sa" 

SecurityContext: 

privileged: true 

EnvironmentVariables: 

- Name: "RABBITMQ_USER" 

Value: "guest" 

- Name: "RABBITMQ_PASSWORD" 

Value: "guest" 

- Name: "RABBITMQ_HOST" 

Value: "rabbitmq" 

- Name: "RABBITMQ_PORT" 

Value: "5672" 

- Name: "INPUT_DIR" 

Value: "/starlight/data/input" 

- Name: "OUTPUT_DIR" 

Value: "/starlight/data/output" 

- Name: "BATCH_SIZE" 

Value: 5 

Ports: 

- ContainerPort: "5672" 
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Volumes: 

- Name: "uc3-pv-storage" 

VolumeSource: 

PersistentVolumeClaim: 

ClaimName: "uc3-pv-claim" 

VolumeMounts: 

- Name: "uc3-pv-storage" 

MountPath: "/starlight/" 

InitContainers: 

- Name: "init" 

Image: "busybox:1.28" 

securityContext: 

privileged: true 

volumeMounts: 

- mountPath: "/starlight/" 

name: "uc3-pv-storage" 

Command: 

- sh 

- -c 

- | 

if [ ! -d /starlight/data ]; then mkdir -p /starlight/data; fi; 

if [ ! -d /starlight/runtime ]; then mkdir -p /starlight/runtime; fi; 

if [ ! -d /starlight/runtime/infiles ]; then mkdir -p /starlight/runtime/infiles; fi; 

if [ ! -d /starlight/runtime/input ]; then mkdir -p /starlight/runtime/input; fi; 

if [ ! -d /starlight/data/input ]; then mkdir -p /starlight/data/input; fi; 

if [ ! -d /starlight/data/output ]; then mkdir -p /starlight/data/output; fi; 

if [ ! -d /starlight/data/input/processed ]; then mkdir -p /starlight/data/input/processed; fi; 

if [ ! -f /starlight/runtime/processlist.txt ]; then touch /starlight/runtime/processlist.txt; fi;  

 

- MicroserviceName: "data-connector" 

Version: "1.0" 

Image: "quay.io/bcapper30/ionos-s3-consumer-env" 

ID: "data-connector" 

ClusterAffinity: "orchestrator" 

Dependencies: 

- "orchestrator" 

ResourceRequirements: 

Cpu: "1 vCPU" 
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Memory: "2Gi" 

MicroservicesSLAs: 

ServiceAvailability: "99.9%" 

MaxResponseTime: "N/A" 

DataThroughput: "Medium" 

ReplicaCount: "1" 

EnvironmentVariables: 

- Name: "JAVA_TOOL_OPTIONS" 

Value: "-Dedc.fs.config=/app/resources/config.properties" 

- Name: "EDC_PARTICIPANT_ID" 

Value: "consumer" 

- Name: "WEB_HTTP_PORT" 

Value: "9191" 

- Name: "WEB_HTTP_PATH" 

Value: "/api" 

- Name: "WEB_HTTP_MANAGEMENT_PORT" 

Value: "9192" 

- Name: "WEB_HTTP_MANAGEMENT_PATH" 

Value: "/management" 

- Name: "WEB_HTTP_PROTOCOL_PORT" 

Value: "9292" 

- Name: "WEB_HTTP_PROTOCOL_PATH" 

Value: "/protocol" 

- Name: "WEB_HTTP_CONTROL_PORT" 

Value: "9293" 

- Name: "WEB_HTTP_CONTROL_PATH" 

Value: "/control" 

- Name: "WEB_HTTP_PUBLIC_PORT" 

Value: "9393" 

- Name: "WEB_HTTP_PUBLIC_PATH" 

Value: "/public" 

- Name: "EDC_DSP_CALLBACK_ADDRESS" 

Value: "http://consumer:9292/protocol" 

- Name: "EDC_DATAPLANE_TOKEN_VALIDATION_ENDPOINT" 

Value: "http://localhost:9293/control/token" 

- Name: "EDC_DATAPLANE_API_PUBLIC_BASEURL" 

Value: "http://localhost:9393/public" 

- Name: "EDC_DSP_HTTP_ENABLED" 

http://consumer:9292/protocol
http://localhost:9293/control/token
http://localhost:9393/public
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Value: "true" 

- Name: "EDC_API_AUTH_KEY" 

Value: "password" 

- Name: "EDC_TRANSFER_PROXY_TOKEN_SIGNER_PRIVATEKEY_ALIAS" 

Value: "edc.connector.private.key" 

- Name: "EDC_TRANSFER_PROXY_TOKEN_VERIFIER_PUBLICKEY_ALIAS" 

Value: "edc.connector.public.key" 

- Name: "EDC_VAULT_HASHICORP_URL" 

Value: "http://vault:8200" 

- Name: "EDC_VAULT_HASHICORP_TOKEN" 

Value: "test-token" 

- Name: "EDC_VAULT_HASHICORP_TIMEOUT_SECONDS" 

Value: "30" 

- Name: "EDC_IONOS_ACCESS_KEY" 

Value: "xxx" 

- Name: "EDC_IONOS_SECRET_KEY" 

Value: "xxx" 

- Name: "EDC_IONOS_ENDPOINT_REGION" 

Value: "eu-central-2" 

- Name: "EDC_IONOS_TOKEN" 

Value: "xxx" 

Ports: 

- ContainerPort: 9191 

- ContainerPort: 9192 

- ContainerPort: 9292 

- ContainerPort: 9293 

- ContainerPort: 9393 

 

- MicroserviceName: "starlight" 

Version: "1.0" 

Image: "rayc/ucm-processor" 

ID: "starlight" 

ClusterAffinity: "processor" 

Dependencies: 

- "eventreceiver" 

ResourceRequirements: 

Cpu: "4 vCPU" 

Memory: "8Gi" 

http://vault:8200/
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MicroservicesSLAs: 

ServiceAvailability: "99.9%" 

MaxResponseTime: "N/A" 

DataThroughput: "High" 

ReplicaCount: "1" 

ServiceAccountName: "starlight-sa" 

SecurityContext: 

privileged: true 

WorkingDirectory: "/docker/starlight/STARLIGHTv04" 

Command: 

- ./bash_script2.sh 

Volumes: 

- Name: "uc3-pv-storage" 

VolumeSource: 

PersistentVolumeClaim: 

ClaimName: "uc3-pv-claim" 

VolumeMounts: 

- Name: "uc3-pv-storage" 

MountPath: "/starlight/" 

Ports: 

- ContainerPort: 8080 

 

- MicroserviceName: "eventreceiver" 

Version: "1.0" 

Image: "rayc/ucm-receiver" 

ID: "eventreceiver" 

ClusterAffinity: "processor" 

Dependencies: 

- "rabbitmq" 

ResourceRequirements: 

Cpu: "1 vCPU" 

Memory: "2Gi" 

MicroservicesSLAs: 

ServiceAvailability: "99.9%" 

MaxResponseTime: "N/A" 

DataThroughput: "High" 

ReplicaCount: "1" 

EnvironmentVariables: 
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- Name: "RABBITMQ_USER" 

Value: "guest" 

- Name: "RABBITMQ_PASSWORD" 

Value: "guest" 

Volumes: 

- Name: "uc3-pv-storage" 

VolumeSource: 

PersistentVolumeClaim: 

ClaimName: "uc3-pv-claim" 

VolumeMounts: 

- Name: "uc3-pv-storage" 

MountPath: "/starlight/" 

 

Networking_graph: 

- Source: "orchestrator" 

Destination: "rabbitmq" 

Protocol: "TCP" 

Port: "5672" 

- Source: "data-connector" 

Destination: "orchestrator" 

Protocol: "HTTP" 

Port: "9192" 

- Source: "eventreceiver" 

Destination: "rabbitmq" 

Protocol: "TCP" 

Port: "5672" 

- Source: "eventreceiver" 

Destination: "starlight" 

Protocol: "HTTP" 

Port: "8080" 

 

Global_SLA: 

ServiceAvailability: "99.9%" 

MaxLatency: "500 ms" 

MaxResponseTime: "N/A" 

DataThroughput: "High" 

UC3 AppD 
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