¢

24

D.5.2 Report on Integration the CECCM

Document Summary Information

Project Identifier

HORIZON-CL4-2022-DATA-01. Project 101093129

Project name

Agile and Cognitive Cloud-edge Continuum management

Acronym AC3

Start Date January 1, 2023 End Date December 31, 2025

Project URL www.ac3-project.eu

Deliverable D5.2 Report on Integration of the CECCM

Work Package WP5

Contractual due date | M24: 31t December | Actual submission date | M29: May 2025
2024

Type

R (Report, Document)

Dissemination Level

PU (Public)

Lead Beneficiary

RHT

Responsible Author

Ray Carroll (RHT)

Contributors

Ray Carroll (RHT), Ben Capper (RHT), Ryan Jenkins (RHT), D. Amaxilatis (SPA), N.
Tsironis (SPA), T. Sarantakos (SPA), D. Klonidis, N. Psaromanolakis (UBI), Mario
Chamorro (UCM), Eduardo Ojeda (IQU), Abdelhak Kadouma (FIN), Mohamed Mekki
(EUR), Mohamed Mokhtari (EUR), Meliani Abd Elghani(EUR)

Funded by the
European Union

AQ project has received funding from European Union’s Horizon Europe research and innovation
programme under Grand Agreement No 101093129.

http://www.ac3-project.eu/

D.5.2. Report on Integration the CECCM

AC

Peer reviewer(s)

Amadou Ba (IBM), John Beredimas (CSG)

Revision history (including peer reviewing & quality control)

Version | Issue Date | % Complete Changes Contributor(s)

V0.1 12/02/2025 5% Initial Deliverable Structure Ray Carroll (RHT)

V0.2 12/03/2025 60% First Round of Contributions All

V0.3 20/03/2025 70% Initial Review Ray Carroll (RHT)
Ben Capper (RHT)

V0.4 01/04/2025 80% UC1, UC2, UC3 Updates Ray Carroll (RHT)
Dimitris Amaxilatis (SPA)
Abdelhak Kadouma (FIN)
Dimitris Klonidis (UBI)
Nikos Psaromanolakis (UBI)

V0.5 11/04/2025 85% ToC, Figures, Executive Ray Carroll (RHT)

Summary, Annex

V0.6 22/04/2025 90% Peer Review Amadou Ba (IBM)
John Beredimas (CSG)

V0.7 01/05/2025 93% Document Cleanup Ben Capper (RHT)

V0.8 19/05/2025 95% Coordinator Review Adlen Ksentini (EUR)

V0.9 24/05/2025 97% Coordinator Review Comments Ben Capper (RHT)
Dimitris Amaxilatis (SPA)
Eduardo Ojeda (IQU)

V1.0 24/07/2025 100% Final Version

Disclaimer
© AC32023 Page | 2

D.5.2. Report on Integration the CECCM AC® KQT

The content of this document reflects only the author’s view. Neither the European Commission nor the HaDEA
are responsible for any use that may be made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the AC3 consortium make no warranty of any kind with regard to this material including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.

Neither the AC3 consortium nor any of its members, their officers, employees or agents shall be responsible or
liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the AC® Consortium nor any of its members,
their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage
caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© AC3 Consortium. This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

Table of Contents

1 EXECULIVE SUMIMAIY ceeiiiiiiiiiiiiiiiieie ittt e e e e e e e e s bbbt bt bt b e e e b e b e eeeeaeaeaeseaeeeeeeeeaeeeseeeeeeeeens 9
B (0] o Yo [T ox 4T o F PP RRTPPPOt 10
2.1 Overview — PUrpoSe and ODJECLIVESuvviiiiiiiiciiieee ettt ecetree e e e e eeeebbrr e e e e e s e abbaeeeeeeseatsreeeeesennnanns 10
2.2 Link With Other Project aCtiVities.......cccuiii it e et e e e ebe e e e e bt e e e eeabee e eeaneeeeenreas 10
2.3 MAPPING AC3 OULPULS ...eeiiiiiieeiiiiiieee e e ettt et e e e e sttt e e e s s sabetteeeessasbebeeeeessasassreeeeessssanssssaeeesssasasssaeeeesssnnnnse 10
2.4 Deliverable Overview and REPOIt STFUCTUIEc..uviiiiiiee ittt ettt e e rate e e e e are e e e sbae e s e anaeeeenreas 11

. J U Lt PR TRPPt 13
3.1 USE CaSE DESCIIPLION ..uuttiiiiiiiiiiiiiiiereeeteteeeteteteteteteteteeeeeeeeeeeeeeesesesesessssesssessssenssenens 13

K J0 O R O o [T o1 1 Y/ SRR 13
3.0.2 UCL StaKERNOIAEIS ...couviiiiieiie ettt ettt ettt ettt st e s bt e s bt e e st e e sabeesabeesabaesbaeenaseesaseenns 14

I A U I N 0 1 <l Y ol 11 =Y ot ISP 14

K 30 R U L N O LY AN o] o] [ok 1 To o PSPPSR 14
3.2.2 UCTestbed — Hardware and SOFtWAIEcccciiiiiiiniierieesieeeiee et see e e sve e sste e ssaeeesneeesanee e 16

3.3 Component INtEEratioN DESIZNccuiii ittt ettt e e e e s e sttt e e e s e sabeeeeeesesasrraeeeeesannnne 20
3.4 Component INteZratioN StAtUS......uiiiiiiiiiiiiiii e e e e e s s s s e e s s s s s s bbb bababababaeaeaeaeaee 23
3.4.1 Data Management and CONNECLONSuuiiiiiiiciiiieeee e e ccctree e e e e eseree e e e e e e sabrrre e e e e s esabereeeeeeessnsranneeaaeeas 23

R I B YTV ol N 01 -1 [0 4 U PSSP 24
3.4.3 Data SoUrCE DEPIOYMENT ...ccoieiiiiiciee ettt e e e e et e e e st e e e s eateeeeebteeessstaeeesseeeesansanananes 27
3.4.4 Application DESCrIPLOr — OSRcciiciiiiiiiiieiciiee e ccitee ettt e et e e e stre e e sebteeeesbaeeesbteeesanteaeesseeeesansenansnes 29
BUA5 LM ettt et e e bt e e e b et e e bt e e e s aabae e e s b tae e s e baee e e bteeesaabeeessabtaeesantaeesaate 31

3.5 ReMAINING INTEEIAtIONiiiiiiiieeee ettt e e e sttt e e e e s e s b et e e e e s e s abbbeeeeeesansraeeeessasnnee 34
3.6 UCL INTEEratioN SUMIMAIYuvuiiiiiiiiiiiititieieteteteteteteteeeteeeeeeeeeeeseseseseessesens 35

© AC3 2023 Page |3

D.5.2. Report on Integration the CECCM AC® KQT

N UL G PO PSP PP PP PTOPPPPI 37
R U I O 1Y D 1= of o) f o o PSSR RPR 37
I A U Y O 1Y T @ o T[Tt f V=TSP PRP 37
I A U T 0] =1 =Y g o] [[T S OO SPOTPPPR 37

o U Y O 1l Y ol 1 =T o1 AU | I PSPPI 38
0 A LY - 1Y <11V o T o] [Tor= o o I SRR 38
4.2.2 UC Testbed — Hardware and SOftWAIrEcc.uiiieiiiiiiiieeciiee ettt see s e e e e sbae e e s 40

4.3 Component INtegration DESIENccoeiiiiiiiiiee e e et e e et e e e e e aaaaaaaaaaeaeas 42
4.4 Component INtegration STatUS.......coooi oo e e e e e e e e e e e e e e e eeeeaeeeaaaaaaaaaaas 46
7 A AN oY o] [ToF= Y To T o T [a1 =T = Vol ISP 46
4.4.2 GUI for Developer (Application GAtEWAY)......ccccuiieieiuieeeeciieeeeiteeeeeee e e e e eeree e e eare e e e e beeeeeanaeeeeenreas 49
4.4.3 Ontology and SEMaANTIC REASONETc.uuiiiiiiiiiicitee ettt st et e e e e e e rae e e s btee s e ssbeeeesnbaeeessares 52
R 1@ VO TSP UPRTPPPR 54
I |V, Fo] o 11 o] 41 o V- SO PP PP PPTPPRPPP 57
446 ComPULE LIMIS ettt e e et et e e et e e aaaaaeaaaaaeas 58
oy A VL1 VT o 1Y Y PSPPI 58

4.5 RemMaining INtegratioN ...ttt et e e e e et e e e e e e aaaeaaaeaeeens 58
Nt R 0 T=T o Lo)Y =Y oY ARV = T 1 U U 58
4.5.2 Integration of Predictive Models with Al-based LCMccoociiiiiiiiieiciee e 58
4.5.3 FINQl USE €S TOSE ..itiiiuiiiiiiiiiiie ittt ettt e sttt ettt e st e e st e e s s bte e s s bt e e saabteessasbaeesassbaesesabeeessnsanessnrens 59

4.6 UC2 INtEEIatioN SUMMIAIYuviiiiiiiiiiiiiteeeeereiittte e e e e sttt e e e s sssabbteeeessssssbesaeeesssasssssaaeeesssssssenaeeessssnssssaees 59

LT U L G0 OO T PP P PP PPRRPPPPPROt 60
TNt A U LY 0= 1 T 1YYl 1 o TN 60
LT O B U LY O L S] o 1=t 1Y LR 60
LT A U [0 B =1 1] L] (o =T SRS 60

5.2 USE CaS@ ArChITECTUIE c.ueiieiiieie ettt et et sab e st e s abe e sabe e sabe e e sabeesabeesabeesabaesbaeenseean 61
oI R U LY O 1Y I AV o] T | o USRS 61
5.2.2 UC3 Testbed —Hardware and SOftWarecccuiiiiiiiieiciec ettt e e s saaee s 63

5.3 Component INteZration D SIZNuuiuiiiiiiiiiiiiiiiiiieieieieeeeet ettt e e e e e e e s s s s s s s s s s s s s s aababebabebebebaeeenerenee 65
5.4 Component INteEratioN STATUS......couii ittt e e e et e e e e e e sb b e e e e e s e ssbrreeeeessanannne 69
LI 05 N Vo] o] [ot 1 A To T g T 0| A=Y =Tl < IR 69
5.4.2 Data Management and CONNECLOISuuiiiieieiiciiiiee e e e eeccte e e e e e e esrreee e e e s e sbtrae e e e s seeassaeeeeeesesnnsennees 70
5.4.3 OSR and Application DESCIIPLON ...ceiicuiiiiiiiiieecitie e ecttee e et eerre e e et e e esta e e e sabeeessabaeeessseeessseeesanssneeas 76
LI S 1 O PP POTPPPPP 78

o T Y/ o] o 11 (o] o 1 o - S PO PP P PP PP PP PP PP TP 84
5.4.6 COMPUEE LIMIS .. ettt ee e e e e e e e e e e e e et e e eaeeeeeeaaaeaaaeaeeeeeeeeeeesesesesesssssnsssannnnnnnnnen 86
LI oy A 1 Yo T 1Y TSR 87
5.4.8 ReMaAIiNING INTOEIATION . .uuuiiiiitt e e e e e e e e e eeeeaeeeaeaaaeaeeeeesesesesnsessssssssssssssssssnnns 88

5.5 UC3 INtEEration SUMIMAIYuuiiiiiiiiiiieiieeeeeeeeeeeeeeeeeseeeeeeeeaeateaeaaeasesessaeesaaasaasssaaasaannnnnnsnsnsssnssssnsnsnsssnsssnnnnnnns 89

I ©o 11 Vol [V o T - J T OO P TP STRTRTPPR 91
A £ (=) =Y ¢ T o o] E PP RTPPPNt 92
8 Annex |: OSR ApPliCation DESCIIPLONSuuiiiiciiieiiirieecciee e e ettt e e estee e e st e e e stre e e ssatreeesebeeeesasaeeesssseeesssneessnsseeens 93
(U@ O R S92 o] o [Tor= N [o g T B LTy of o o] PR 93
UC2 OSR APPlIiCation DESCIIPLON ..vviiiiuiiieiiiiieeeeieee ettt e sttt e ssree e sttt eessataeeessbeeesastaeessssaeeessseeessssseeesassenessnsseeenn 96

© AC3 2023 Page | 4

D.5.2. Report on Integration the CECCM AC® Q

UC3 OSR APPlIiCation DESCIIPLON ..veiiiiuviieeiiiieeeiiteeesitteeesteeesstee e e streeesateeeesaateeesssaeeesssaeeeansteeeessseeeesnsseessnnsens 100
Table of Figures
Figure 1 - Dashboard showing sensor readings, processing speed, and machine learning statistics in real time.16
Figure 2. Depiction of the UC1 Data Source, Edge and Cloud Domains and the flow of data between them...... 17
Figure 3. The IQU Offices loT Data Source Domain that represents the loT infrastructure of UCL. 18
Figure 4. Exposed Endpoints of the K8S CIUSTEI APouei ettt e e errrre e e e e e e re e e e e e e e enrraae s 19
Figure 5. Architecture for Exposing the K8s API Server Through Domain-Level Port Forwardingcc.c......... 20
Figure 6. UCL / AC3 COMPONENT INtEEIAtION......cccueieieeecteeecteeeteeeeteeeeteeeeteeeeteeeteeeteeeeteeeeteeeeaseeesseeesteestesenseeenseeas 21
Figure 7. UC1 application definition and deploymentcoocuiiiiiiiiei it 22
Figure 8. UC1 Data Processing PiPeliNe..........uuiiiiiiieieiee ettt e e e e e e s vtare e e e s s e saab e e e e e s e eennreaneeas 23
FIBUIE O: UCL DA@SET..ceeiiiiiiiiiiiiiiiiiiieieiieteeeeee ettt e ee e e e e s e e e e e s e s s st s st st st bt b e b et e eeeeeeeeseseseseaaeeeaeaeeeeaeeeens 24
[T ={ U1 =T 0 R O L @ R @] oY =Tl o] S PP PP PPPPPPPPPPP 25
FISUIPE 11, UCT LOGEEN .eeueeeiieeieeeeeitttte e e e ettt et e e ettt e e e e e s tat e e e e e s s aabbeeeeeeaesausbbaaeeeessaansbaeaeessansssbaaeeeaessnsrnaeens 26
T (UL I A O L O A AV =T o 1T PP PPPPPPPPPPPPPR 27
Figure 13: Overview of UC1 Architecture, highlighting the integration of LiSO's orchestration layers and image
=T V7P PPPPPPPPPPPPPR 32
Figure 14. Architecture of the video surveillance and environmental monitoring system, illustrating data
processing across central servers, regional edge nodes, and far-edge devices in an urban parking lot............... 39
Figure 15. TeStDEA ArCHITECTUIEo ettt e e et e e e et ee e e e bt e e e eatee e e eabaeeeentaeeeanbeeesenteseenses 42
Figure 16. Mapping of the AC3 Component Architecture to the Current Implementation in UC2.........c..cc.c........ 43
Figure 17. Microservice Architecture and Placement in UC2c.ooeeiiiiiiiciiec ettt e et 44
Figure 18. Detailed Workflow for UC2 Application Deployment Using the AC3 CECC Manager Framework 45
Figure 19. UC2 User AUthENTICAtiON SCrEENciiiiiiieiciee ettt et eee e e ette e e e ete e e e sba e e e eate e e esabaeeesreeeeennses 46
Figure 20. UC2 Edge Server configuration SCrEEN..........uiiii i icciiieee ettt e e e e st e e e e e e e e anbre e e e e e e eeanrraneeas 47
Figure 21. UC2 Far Edge Server configuration SCrEEN........cciiciiiiiciiie ettt etee e e ete e e s ree e e aae e e e 47
Figure 22. UC2 deViCe MaNaZEMENT ...cciii i iiiiieee ettt e e e eecttte e e e e e ettt ee e e e e e e s sanbtaeeeeeseenseaaeeeessenssstaneeeasesnsrnnnes 48
Figure 23. Real-time detection and monitoring dashboard...........cceeeviiiii e 48
Figure 24. Query and archive reVIEW PANEceiiiiicciiiiiie et e s e e e s e e s e e e e s e snab e e e e e e e e ennrnnneas 49
Figure 25. UC2 Application metadata iNPUL........cooiciiiiiiiie et e e s e e e 50

© AC3 2023 Page |5

D.5.2. Report on Integration the CECCM AC® Q

Figure 26. Microservices CoONfiguration fOrMcii i e et rae e e s rae e e e 51
Figure 27. Networking Graph Configurationocciiiiii i e e e e rrrr e e e e e et e e e e e e e s ennraaeeas 51
Figure 28. Translating the AC3 AppD to a LiSO Network Service Descriptor.......ccccveieeeeeiveeiecreereereereeveeeveenne 55
Figure 29. Detailed Architecture of LiSO and Its Mapping to AC3 Framework Componentsccceeuveveeveennenne. 56
Figure 30. UC3 Application Architecture Orchestrator......ccocciiiicciie e 62
Figure 31. UC3 Infrastructure / AC3 COmpPonent INTEEIatioN........ccviveeireeireeeieereeereecteeereeeteeeeeeeeereeeresereeeseeenneenns 65
Figure 32. UC3 / AC3 Component Integration — How UC3 leverages the components developed in AC3............. 66
Figure 33. UC3 Application Onboarding PiPeliNe..........cccueiiiiiiii ittt etre e et e e e bae e e e e e 67
Figure 34. UC3 Data Processing PIPEIINE.........uuiiiiiieiiiiiie ettt e ettt e e rtre e e e e e e e aaaa e e e e e s e sanbaeeeeeeeeeannraneeas 68
Figure 35. UC3 MoNItoring SEqUENCE DIiagram . ..cccceeiiirieieieieieieicc v e e e e eeeeeeeeeeeeeeaeaaeaeasaaeeas 69
Figure 36. S3 BUCKET FIl@ SEIUCLUIEviieei ettt e e e e et te e e e e e e et e e e e e s esabaaaeeeeesesnnbtaeeeeeeesnnsrnnnens 70
Figure 37. EXamPle FitS data.....cceiveirieicieeee ettt 72
Figure 38. MEGARA Data-cubes as fits file DatCches ..o 72

Figure 39. Schematic representation of the OSR-to-MAESTRO Exposure translation process, in which the
K8S Manifests files are extracted by the AC3 App Descriptor for each micro-service.ccocevevvveevreenennne. 79

Figure 40. Process workflow for the deployment of an AC application request from the OSR translation

point to the iNterfacing With ACM ... 80
Figure 41. Schematic representation of the CustomManifestWork creation from the Manifest files and the
combination of cluster metadata using a cluster labelling scheme..........cccoevveinninninninceee 80
Figure 42. The MAESTRO LCM architecture adapted to the AC3architecture........cccoeeeeeeeeieecieeccee e 82
Figure 43. Custom metric exposure process and metrics injection into the system........cccccceevcveeiiiciee e, 83
Figure 44. Visual representation of Our monitoring Config with our Thanos URL inserted............cccoceeeecuveeennnnen. 85
Figure 45. Batch Processing Time based on queue 1eNGLHoooiiiii i 86
Figure 46. Visual representation of Skupper links between namespaces/clusterscccceevvvveevivecceeecreeecreeeenen. 88
List of Tables

Table 1: Adherence to AC3 GA Deliverable & Tasks DESCIHPLIONSc.vcvuvecieerieerieesieesieesieesteesreesteesteesteesteesseesasesenas 10
Table 2: UC1 Edge K8S CIUSTEr DETAIIS.......cciiiiiiieeiiee ettt re e et e e et e e e e abte e e enbae e e eaneeeeenenas 18
Table 3: UCL INtegration SUMMIAIYciic i ciiiiee e ceciteee ettt e e e e e et re e e e e e e e tete e e e e esesanstaseeeesssastssaseeaesesnnntaneeaaaann 36
Table 4: UC2 INTEZration SUMIMATYccicicuiieeiiieeeeiieeeeiteeesitreesstreeesssteeesssaseeeesssaeesssssesessssaseessssesesssesessnssesessnsens 59
Table 5: UC3 INteGration SUMMAIYcciic ettt e e eetrte e e e e e et e e e e e e s eee e e e e e e sesanstaeeeeeeeanstesneaeeesennnstnnneassann 89

© AC3 2023 Page | 6

D.5.2. Report on Integration the CECCM AC® =

Glossary of terms and abbreviations used

Abbreviation / Term | Description

AC3 Agile and Cognitive Cloud edge Continuum management
ACM Advanced Cluster Management

Al Artificial Intelligence

API Application Programming Interface

AppD Application Descriptor

CECC Cloud Edge Computing Continuum

CECCM Cloud Edge Computing Continuum Manager
Cl/cb Continuous Integration/Continuous Delivery
CRUD Create, Read, Update, Delete

GUI Graphical User Interface

HPA Horizontal Pod Autoscaler

IFS Integral Field Spectroscopy

loT Internet of Things

JWST James Webb Space Telescope

KPI Key Performance Indicator

K8s Kubernetes

LAN Local Area Network

LCM Life-Cycle Management

LISO Lightweight Edge Slice Orchestration

LMS Local Management System

ML Machine Learning

NSD Network Service Descriptors

NBI Northbound Interface

OSR Ontology and Semantic aware Reasoner
owL Web Ontology Language

© AC3 2023 Page |7

D.5.2. Report on Integration the CECCM

ACC

PaaS Platform as a Service

RAM Random Access Memory

RDF Resource Description Framework
RLOs Resource Level Objects

i Reinforcement Learning

ROL Resource Orchestration Layer
RBAC Role-Based Access Control

53 Simple Storage Service

SD-WAN Software-Defined Wide Area Network
SLA Service Level Agreement

TMF TM Forum

UAV Unmanned Aerial Vehicle

ucC Use Case

VLT Very Large Telescope

VoD Video on Demand

XAl eXplainable Al

XGBoost Extreme Gradient Boosting

© AC3 2023

Page | 8

D.5.2. Report on Integration the CECCM AC® =

1 Executive Summary

In the present document, D5.2 Report on Integration of the CECCM, we provide a comprehensive description of
the work carried out thus far on the integration of the Cloud Edge Computing Continuum Manager (CECCM)
components within the AC3? project. As per [1] D5.1 Initial Integration and proofs of concept plan, a Use Case
(UC) oriented approach to integration is taken, in which the CECCM components of the architecture are
integrated across the three UCs (Internet of Things and Data, Smart Monitoring System using Unmanned Aerial
Vehicles, and Deciphering the universe: processing hundreds of TBs of astronomy data), subject to their
relevance to the specific UC. The core aim is to clearly demonstrate how the integration of the CECCM
components supports and augments the UCs, and the work completed towards that goal. As such, this report
gives a comprehensive level of detail on the partial technical implementation of the component integration.

In Sections 3, 4, and 5, on a UC basis, we briefly revisit the core goals and objectives and then describe the
architecture of both the UC application and testbed. We then give a detailed description and workflow of how
the CECCM components are integrated into the UC, before finally going into a detailed description of the
integration of each component. A brief summary of the 3 UCs is given below:

1. UC1, IoT and Data, strives to optimize resource allocation in office buildings. It involves deploying
sensors to monitor environmental factors and human presence, with the goal of maximizing occupant
health and comfort by adjusting lighting and heating systems in real-time.

2. UC2, Smart Monitoring System using UAVs, revolves around the development and implementation of a
Smart Monitoring System utilizing unmanned aerial vehicles (UAV), Al/Machine Learning (ML)
technologies, and edge computing to enhance video surveillance and environmental monitoring. Its
primary goal is to optimize urban security, traffic management, and environmental tracking through the
CECCM.

3. UC3, Deciphering the universe: processing hundreds of TBs of astronomy data, analyses large 3D data
cubes of astronomy data, which contain a detailed image and spectral information about galaxies, to
extract key insights such as stellar kinematics and population characteristics. Its main challenge is that
handling these vast datasets requires significant computing power, memory, and efficient data
management, as well as scalable and distributed processing capabilities.

All the UCs will demonstrate the core components of the AC3 architecture, including the GUI, OSR, LCM, and
LMS. While UC2 highlights the integration of far-edge nodes, such as drones, both UC1 and UC2 showcase data
management capabilities; specifically focusing on the integration of hot and cold data sources, respectively.
Additionally, each UC will incorporate Al-based algorithms, as defined in WP3 and WP4, to enhance LCM
functionalities and manage application life cycles. This includes features such as Al-driven application migration
and Al/XAl-based workload scalability management.

Further, within each UC section, and specifically in their concluding integration summaries, the deliverable
provides a clear status of integrated components, identifying those that have been finalized and those that
require further work, building upon the initial integration plans outlined in D5.1.

The main conclusion of this report, detailed in Section 6, is that, through the extensive collaborative work carried
out by both the UC and component owners, a clear path to realising the AC3 vision is now in place. Based on the
strong foundational work described within this report, the consortium can now progress towards delivering
tangible benefits of the CECCM through demonstrations, experimentation, and results within the final phase of
the project.

© AC32023 Page |9

D.5.2. Report on Integration the CECCM AC? ig‘i

2 Introduction
2.1 Overview - Purpose and objectives

To date, the project has been focused on designing and refining the core AC3 CECCM architecture, as well as
cultivating innovation within each of the CECCM component areas. In D5.1, we then outlined the Initial
integration and proofs of concept plan, and in this deliverable, we follow this up with a detailed report on the
progress towards these integration goals. As such, the core objective of this deliverable is to present the current
state of the component integration. This document gives a detailed overview of how the components are
integrated into each UC, in terms of interface points and interaction flows. It also gives a detailed technical
description of the implementation of each of the CECCM components, which gives a clear sense of the level of
work that has been carried out to date.

As discussed in D5.1, the approach taken has been to align the integration activities with the UCs and to use
these as drivers for selection, implementation, and evaluation of the relevant parts of the AC3 architecture. This
gives the integration a clear focus and direction, while also delivering component integrations that present the
most value towards the core goals of that UC.

2.2 Link with other project activities

This deliverable is a continuation from [1] D5.1 “Initial integration and proofs of concept plan”, and provides
insights into the partial developments, integrations, and proof of concept activities related to Task T5.1. The work
done in the UC adheres to the requirements defined in D2.4, “Business Analysis of CECC and Use Case
Requirements” [2]. Regarding the data management mechanism, D3.3, “Initial Report on Data Management for
Applications in CECC” [3], provides direct feedback for the design of the overall system and its interface with AC3
service deployment and management mechanisms. D4.1, “Initial Report on Mechanisms that Enable Green-
Oriented Zero Touch Management of CECC Resources” [4], informs the work on resource discovery and
monitoring, Al/ML models for resource management, green-oriented LCM decisions for resource management,
and networking programmability of CECC. D3.1, “Initial report on the Application LCM in the CEC” [5], navigates
through the various components related to the user plane of the CECCM, namely the User Interfaces, Application
Profiles, Ontology Modeling Tools and Application Descriptor Models. Moreover, D2.3 “Report on technological
tools for CECC” [6] provides a comprehensive overview of the technological tools, laying the groundwork for their
integration within the AC2 framework. The careful selection and analysis of these tools in D2.3 was a crucial initial
step toward ensuring a smoother integration process in subsequent work packages. Finally, D2.1 “CECC
framework and CECCM” [1] provides the architecture framework for all UC.

2.3 Mapping AC3 Outputs

The purpose of this section is to map AC? Grant Agreement commitments, both within the formal Deliverable
and Task description, against the project’s respective outputs and work performed.

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions

AC GA AC3 GA Component -
. Respective Document O
Component Outline Justification
Title Chapter(s)

© AC3 2023 Page | 10

ACt

D.5.2. Report on Integration the CECCM

DELIVERABLE

D5.2 Report on Integration of the CECCM:

“Report on the implementation of the CECCM and integration of components.”

TASKS

Task T5.1: AC3
components
integration

Task T5.2:
Testbed
integration

Task T5.3: Field
trials execution

“Each partner involved will
develop their individual
components and/or
functions and show their
project results based on
the tests done in their labs,
where all essential
functions can be tested.”

“This task will concern the
integration of the software
and hardware needed to
run the three UCs.”

In this task, the evaluation
of the solutions proposed
in WP3/4 will be
performed through
simulation and
experimentation of the
three PoC.

Sections 3.3, 3.4, 4.3,
4.4,53,5.4

Sections 3.2, 4.2, 5.2

Sections 3.5, 4.5, 5.5

2.4 Deliverable Overview and Report Structure

Sections 3, 4, and 5: UC1, UC2, and UC3

For each UC, the “Component
Integration Design” section
describes how and which AC3
components are leveraged by the
CECCM software to support the
respective UC, while the
“Component Integration Status”
sections detail the progress of
integrating these components to
enable that support.

The “Use Case Architecture”
section of each UC describes the
core infrastructure set up by
project partners to deploy
applications and AC® components
for the respective UC.

For each UC, the “Results” section
demonstrates how the
experimentations and simulations
can validate that the AC3
components and CECCM software
meet the KPls and metrics
required by the respective UC
applications.

Sections 3, 4, and 5 describe the implementation and integration efforts for UC1 (loT and Data), UC2 (Smart
Monitoring System using UAVs), and UC3 (Processing TBs of Astronomy Data), respectively. While the UCs are
separated for clarity, all three sections share a common internal structure to ensure consistency, as follows:

e Use Case Description and Objectives: Provides an overview of the UC goals and core functionalities (e.g.,
optimizing building operations for UC1, enhancing urban surveillance for UC2, processing astronomical
data for UC3), setting the stage for the integration work.

© AC3 2023 Page | 11

D.5.2. Report on Integration the CECCM AC® Q

e Use Case Architecture: This subsection details the architecture of the UC, including the application
design and testbed setup, highlighting how they support the UC objectives within the AC3framework.

e Component Integration Design: Explains the design of CECCM component integration for the UC,
detailing how components (e.g., EDC Connectors, LiSO, Maestro, OSR) interact with the UC to enhance
functionality and performance.

e Component Integration Status: Offers a detailed technical update on the implementation status of each
integrated CECCM component, including progress on data management, orchestration, and monitoring
systems.

e Results: Presents any initial results from the integration efforts, such as experimental outcomes or
system performance metrics, where available, with further details deferred to future deliverables.

Section 6: Conclusions

This section summarizes the deliverable key findings, emphasizing the collaborative work between UC and
component owners. It reaffirms the progress toward the AC3 vision and outlines the next steps for achieving
tangible benefits through demonstrations and experimentation.

Section 7: References

This section lists all external sources, including project deliverables and relevant scientific publications, that
provide foundational context, data, or methodologies cited within the deliverable. This ensures transparency
and enables readers to access original source material for further information.

Section 8: Annex

This section provides a complete view of the application descriptors that can be generated by the OSR for each
of the UCs, detailing the microservices, dependencies, and group affinities for each.

© AC3 2023 Page | 12

D.5.2. Report on Integration the CECCM AC® Q

3 UG
3.1 Use Case Description

UC1 introduces an innovative loT-based, smart sensing and monitoring framework designed to leverage the
transformative potential of edge Al technologies within a Cloud Edge Computing Continuum (CECC)
infrastructure. It aims to enhance the monitoring and management of infrastructures ranging from individual
smart homes to expansive smart grids on a national scale, regardless of the underlying technologies for data
collection and data communication. In this context, UC1 is engineered to integrate physical and digital realms
more seamlessly than ever, thereby managing and processing a significantly larger volume of loT data to enable
timely decisions and responsive actions based on sensed conditions. It also focuses on data fusion, integrating
outputs from diverse sensors to create detailed profiles and detect patterns that help in proactively managing
events and minimizing their impact on infrastructure operations. This advanced functionality not only supports
basic applications like air quality monitoring but also intends to enable immediate, localized decision-making
through a blend of loT innovation and edge computing intelligence.

3.1.1 Objectives

UC1 is set to showcase the remarkable capabilities of the CECCM, with a keen focus on several ambitious
objectives that highlight its potential:

¢ Intuitive application definition: Leveraging an intuitive GUl and Ontology and Semantic aware Reasoner
(OSR), the application developer can efficiently define and deploy microservice applications within the
CECCM framework. This system will simplify the user experience, making it easier to harness cutting-
edge technology, including cloud and edge domains and Al/ML capabilities. Moreover, the system
includes several essential components that are integral to data management: Catalogues, which provide
descriptions for available data sources; Data Provider Connector, offering access to the data made
available; Data Consumer Connector, which initiates the streaming of data from the source to the
application microservices; Data Mappers, responsible for transforming incoming data as needed; Data
Manipulator, which handles the core application logic; and a Message Broker, responsible for
transferring data between the various application components, ensuring smooth communication and
synchronization throughout the system.

e Automatic Deployment and Zero-Touch Management: UC1 will demonstrate the robust Life-Cycle
Management (LCM) capabilities of the CECCM developed in AC3, enabling the automatic deployment,
monitoring, and maintenance of microservice applications. Using Al and ML-driven zero-touch
management algorithms, the system can autonomously optimise and sustain application performance.

e Microservice Deployment and Migration: The CECCM’s resilience will be further highlighted by its ability
to deploy and manage microservices across cloud-edge environments. Should the application in an edge
deployment become unavailable or face resource limitations, the system can automatically migrate
services to alternative cloud infrastructures, ensuring uninterrupted service delivery and continuity.

e Data Analysis and Decision-Making for Smart Building Installations: By leveraging Al and ML techniques,
the system will enable real-time analysis for the environmental and human presence detection data. This
real-time data analysis will contribute to enhanced building monitoring for actionable insights and
facilitate Al-based decision-making.

© AC3 2023 Page | 13

D.5.2. Report on Integration the CECCM AC® KQT

3.1.2 UC1 Stakeholders
3.1.2.1 End Users / Smart Building Operators

The primary beneficiaries of the deployed UC1 application are the building operators (in our case, the operators
of the QU facility). They rely on the system's real-time insights to monitor and manage indoor environmental
conditions such as CO, levels, temperature, and humidity in conjunction with human presence information. By
leveraging these insights, they ensure occupant safety, comfort, and well-being by adapting the building's air
circulation, heating, or cooling. Through real-time alerts, analytics dashboards, and historical data trends, they
can make informed decisions or even trigger proactive maintenance and improved environmental management
practices to ensure the best and most cost-effective measures are taken.

Although building occupants do not interact directly with the system, they also benefit from Al-assisted
automation and decision-making that optimize their surroundings and allow them to access limited information
about their workplace.

3.1.2.2 Application/Software Developers

The Application and DevOps teams are responsible for designing, implementing, and deploying the microservices
that comprise the UC1 application. These include modules for data ingestion from loT sensors, data
preprocessing, ML-based inference (e.g., room occupancy prediction), and real-time alerting mechanisms. They
also train the ML model needed based on real-world data available in the AC3 Data Catalogue.

The DevOps team also handles these services' packaging, deployment, and lifecycle automation using the
CECCM. By integrating the AC3 components, they benefit from intuitive and efficient automated deployment,
monitoring, maintenance, and migration of microservices between the edge and cloud domains to maintain
performance. This significantly reduces operational overhead and simplifies the management of Al-powered
microservices in an edge environment.

3.1.2.3 Infrastructure Provider / CECCM Integrator
They are responsible for deploying and maintaining the edge and cloud computing environments. This includes:

e Provisioning and configuring physical hardware (loT sensors, data collectors nodes, and servers)

e Deploying the Kubernetes (K8s)-based Local Management System (LMS) in the computing domains

e Integrating the CECCM components (including LiSO for LCM, LMS, GUI, OSR, algorithms developed as
enablers, and so on)

The infrastructure provider ensures that the CECCM is available and operational to support the DevOps and
Application teams during application deployment and runtime. They also handle the secure communication and
synchronization between data sources, edge, and cloud domains.

3.2 Use Case Architecture
3.2.1 Use Case Application

The UC1 application centres on developing an loT-enabled system for monitoring and optimizing building
operations in real time. By deploying a network of sensors throughout a building environment, the system
continuously gathers data on energy consumption, indoor environmental conditions such as temperature,
humidity, and CO; levels, as well as occupancy patterns and equipment performance. This rich stream of data

© AC3 2023 Page | 14

D.5.2. Report on Integration the CECCM AC® Q

provides the foundation for intelligent analysis that supports energy-efficient operation, improved indoor
comfort, and predictive maintenance strategies.

The application demonstrates how buildings can evolve into smart, responsive infrastructures by leveraging loT
technologies to make informed decisions automatically or with minimal human intervention. To enable this, the
system is built on a robust data infrastructure that supports real-time processing, semantic interoperability
across heterogeneous devices, secure and privacy-compliant data sharing, and scalable analytics. Through this
approach, we illustrate how loT-based monitoring can drive sustainability, reduce operational costs, and
contribute to the transformation of traditional buildings into intelligent, adaptive spaces that actively participate
in wider smart city and digital twin ecosystems.

The core of the application is split into two parts, data input and data processing. The first part is responsible for
the continuous acquisition and integration of data generated by the building’s IoT infrastructure. A diverse
network of sensors is deployed across the building to monitor environmental conditions (such as temperature,
humidity, and air quality, etc.). The system ingests high-frequency data streams from these sources through the
AC3 data management, handling issues of heterogeneity and interoperability across different sensor types and
communication protocols. It ensures reliable data collection through real-time or near-real-time pipelines built
using the AC? data management addons. This lays the groundwork for intelligent processing by maintaining an
up-to-date and structured view of the building’s operational context.

Building upon the data collected from the loT infrastructure, the second part of the application focuses on
advanced data analysis using machine learning models. This includes both unsupervised and supervised learning
techniques tailored for detecting anomalies in the building’s behaviour and forecasting future conditions.
Anomaly detection models are trained to identify deviations from typical patterns, which may indicate sensor
faults, equipment failures, or unusual usage behaviours. In parallel, forecasting models predict key variables such
as energy consumption, temperature evolution, or occupancy trends, enabling proactive management
strategies. These insights can be used to optimize energy use, schedule maintenance, and enhance user comfort,
ultimately supporting data-driven decision-making in building operations.

© AC3 2023 Page | 15

D.5.2. Report on Integration the CECCM AC® KQT

sensor_id F1059609C95C ~ sensor_type temperature

Anomaly Detection ML Manipulator Anomaly Status

. ML Latency History

Sensor Data 175ms

15 ms

Sensor Reading Sensor History 12.5ms

10 ms
50

75ms

sms |
: ! B 25ms
2 o0s

Forecasting ML Manipulator (e N

13:30 14:00 14:30 3 16:00 16:30 17:00 3 18:00 18:30 18:00

14:00 15:00 16:00 17:00 18:00
Data Mapper

Mapper Latency Mapper Latency History

0.0025 ms Forecast Latency History

0.0020 ms “
|

400 ms
0.0015 ms
I I
0.0010 ms mnem - nnree
300ms

‘ 0.0005 ms
Il ‘I‘ P JLLIE L L 200ms
LM Il |\ 14:00 15:00 16:00 17:00 18:00 19:00

100 ms
l

At

0s
13:30 14:00 14:30 15:00 3 16:00 16:30 17:00 3 18:00 18:30 18:00

Figure 1- Dashboard showing sensor readings, processing speed, and machine learning statistics in real time.

Figure 1 shows a dashboard view where the users can review the conditions reported by a specific sensing device.
This data includes metrics for both the actual values coming from the sensors and metrics regarding the
processing speed during the first part of the application, as well as the statistics during the application of the
machine learning models on the received data. These metrics are primarily collected and used inside the UC1
application to evaluate its performance and its operation.

3.2.2 UC Testbed - Hardware and Software

The broad UC1 testbed integrates loT, edge computing, and cloud technologies, which are detailed in the
following section, as illustrated in Figure 2:

Edge Domain: An edge server hosting a K8s cluster forms the edge domain, optimizing resource management
for the UC1 AC3 application. This setup allows for data processing close to the source, minimizing communication
costs and latency. However, high |oT traffic can lead to increased processing times beyond the specified SLAs.

Cloud Domain: UC1 utilizes a K8s cluster hosted by ION for cloud services, facilitating service migration in AC3.
This cloud environment can manage significant data volumes, handling peaks by transferring processing from
the edge to the cloud, which may increase latency but ensures compliance with SLAs. Performance monitoring
tools like Prometheus and Grafana are hosted here for data visualization and analysis.

Data Source Domain: This domain is focused on real-time loT data collection and transmission, utilizing:

© AC3 2023 Page | 16

D.5.2. Report on Integration the CECCM AC® =

e loT Sensors: The IQU building is equipped with Sensirion SCD41 CO2 sensors and Shelly Motion 2 devices
for monitoring.

e Raspberry Pi4 & Pi5 Devices: These compact, cost-effective single-board computers run software for
managing sensor data and provide 5G connectivity via SIM8200EA-M?2 5G HATSs or Wi-Fi as an alternative.

Cloud Domain
‘ Master Node K8s

;

Y
-1 Worker Node K8s l Worker Node K8s | - : Worker Node K8s

Meeting Room - Node 1
=\ 8
ey
ol -

Sl ---03)---. H
Shally & HE
ol aaaskandon 1
F)

i § = 1
: Connector ;-ﬁ -————

Server - $1 Server - S2

S) <
l Master Node K8s IQ

o

1 V. V :
Lt --I Worker Node K8s | : Worker Node K8s :--- i Worker Node K8s

1

Figure 2. Depiction of the UC1 Data Source, Edge and Cloud Domains and the flow of data between them.

3.2.2.1 Data Source Testbed

The UC1 data source is based on an loT deployment in the IQU offices that represents the loT infrastructure to
be used for UC1. Figure 3 depicts the setup within an office environment, covering multiple rooms including a
Meeting Room, R&D Room, W&D Room, and a Kitchen. The testbed integrates various loT devices and sensors
across these spaces to enable real-time monitoring, automation, and data-driven insights. Throughout the office,
multiple environmental sensors are deployed, positioned strategically in key locations such as workspaces,
restrooms, and common areas. These sensors measure parameters such as temperature, humidity, air quality
(as CO2 concentration), and occupancy, providing a comprehensive dataset for the analysis of the conditions
inside the office building, the goal of the AC3 UC1 application. Alongside the sensors, the testbed incorporates
Raspberry Pi devices, which serve as data collection nodes. These devices are present in each room to facilitate
data aggregation. The primary objectives of this loT testbed include environmental monitoring, where real-time
tracking of air quality and climate conditions provides insights for occupancy, energy optimization, and indoor
comfort. The inclusion of edge computing capabilities to be presented in the next subsection enables edge

© AC32023 Page |17

D.5.2. Report on Integration the CECCM AC® =

processing of loT data before transmission to a central system, enhancing responsiveness and reducing network
congestion.

This loT testbed represents a scalable and modular framework suitable for smart office applications, energy
efficiency research, and workplace analytics. By leveraging a combination of environmental sensors, edge
computing, and smart automation technologies, it provides a robust infrastructure for studying and optimizing
office environments.

Meeting Room R&D Room W&D Room Kitchen
or)y dlE 9q|p . d | p =
1P 41P L d]P 4P |

3
3
\ 5
« P

Q‘-.-:‘
, e - -
= | ‘

jo

)
U

:
.

Figure 3. The IQU Offices loT Data Source Domain that represents the loT infrastructure of UC1.

3.2.2.2 Edge Compute Testbed

The Edge Compute Testbed for UC1 is hosted at IQU’s facilities and is designed to execute low-latency data
processing using edge Al capabilities. It supports the deployment of UC1’s microservice-based applications and
AC3 components through a K8s-based LMS.

K8s Cluster Configuration

The edge domain is structured as a K8s cluster with one master and three worker nodes as defined in Table 2.
All nodes operate over a secure WireGuard overlay network for inter-node communication and connectivity with
the data source domain.

Table 2: UC1 Edge K8s Cluster Details

Node Role Hostname CPU Cores Memory Status

Master Node ac3-master-vm Intel Xeon 16 192 GB DDR4 Running
Gold 5218

Worker ac3-node-1-vm Intel Xeon 16 192 GB DDR4 Running

Node #1 Gold 5218

Worker ac3-node-2-vm Intel Xeon 16 192 GB DDR4 Running

Node #2 Gold 5218

© AC32023 Page |18

D.5.2. Report on Integration the CECCM AC® KQT

Worker ac3-node-3-vm Intel Xeon 16 192 GB DDR4 Running
Node #3 Gold 5218

All nodes are deployed on a high-performance bare-metal server (S1) that was defined in D4.2 [2], section 5.1.4,
and benefit from centralized storage via a ZFS-backed 2TB NVMe SSD for high-throughput data access. A second
server (S2) specified in D4.2 [2] is also available in case more nodes need to be added to the cluster. It features
an Intel i9-10900L CPU (10 cores / 20 threads) and a 2 TB NVMe SSD.

LMS and Cluster Software Stack
The edge domain LMS is powered by K8s, and the software stack includes:

e K8s Version: v1.30.10

e Container Runtime: containerd

e Container Network Interface: Calico

e Overlay Network: WireGuard (for secure inter-node communication)

¢ Internal Monitoring Stack: Prometheus + Grafana (deployed on both edge and cloud domains)
e Security: TLS encryption with Role-Based Access Control (RBAC) enforcement for K8s APl access.

This setup ensures that all edge domain services in UC1, such as microservices for sensor ingestion, ML model
inference, and messaging, can be deployed and monitored.

Network Setup:

Figure 4 depicts the external-access architecture for the edge K8s cluster, where port forwarding securely
exposes the K8s API server. Port 6443 is forwarded to the master node at 10.0.0.8:6443, enabling external access
via IQU’s domain (dev.iquadrat.com:6443). RBAC enforces fine-grained permissions, and TLS certificates ensure
all communication is encrypted and authenticated.

is running at htt

is running at https:

Figure 4. Exposed Endpoints of the K8s Cluster API

Furthermore, this configuration strengthens security and facilitates seamless integration and secure data
exchange between the data source domain and the edge domain. This enhancement is made possible by the
incorporation of the Raspberry Pi devices into the WireGuard overlay, which enables effective communication
between these domains.

© AC3 2023 Page |19

D.5.2. Report on Integration the CECCM AC? ig‘i

1 1
; K8s Cluster T :
1
. I
1 1
] node 1
1 1
1 1
i Master Node 2]
_— -
s Iquadrat's 1
:I domain b 3 < > @ !
>_ ' node :
1 1
- 1 1
dev.iquadrat.com i Node 3]
port forwarding rules : 1
a) port 6443 to 10.1.1.149:6443] @)b @ !
: WIREGUARD node :
1 1

Edge Domain

port forwarding rules
a) port 6443 to Master:6443

Figure 5. Architecture for Exposing the K8s API Server Through Domain-Level Port Forwarding

3.2.2.3 C(Cloud Compute Testbed

The Cloud Compute Testbed of UC1 operates using the same software tools as the Edge Compute Testbed. The
computing infrastructure used is provided by IONOS as a virtual K8s deployment on its cloud resources to provide
more computing capabilities than the edge location.

3.3 Component Integration Design

Multiple components developed in AC? are integrated with the UC1 application to facilitate the demonstration
of the AC3 features used, and their integration is depicted in Figure 6. In more detail:

1.

The data source of UC1 is registered in the AC? Catalogue, and the EDC Connectors are used to retrieve
the data from it (presented in green colour).

The application’s resource usage metrics are exposed to the monitoring framework via the Prometheus
collectors deployed (light yellow colour blocks) in both edge and cloud locations. These metrics will be
used to train the ML models for the application profiling and migration to implement the intelligent
Lifecycle Management.

The UC1 application specific components (RabbitMQ, Mapper, ML and Ul) are presented in orange colour
and can be deployed either at the edge or cloud locations available. In the role of LCM, we have used
LiSO from EUR. LiSO, which is described in D2.3 [6], is responsible for the deployment of the application
as well as enforcing application runtime decisions based on the Al model recommendations based on
the Application Descriptor (AppD) that is generated by the OSR.

The computation LMS used in our UC is K8s.

© AC3 2023 Page | 20

|
D.5.2. Report on Integration the CECCM AC® l(;l

Al Application Profile

Al-Based LCM

Al Resource Profile

Data Source (IQU)

Northbound API !
Piveau ¢ :
5 OSR :
: Monitorin :
° App :

Descriptor !

y v

loT
A i IQU Edge i ION Cloud

EDC Connector -(—!— LMS i i LMS i
: | Kubernetes API | i : ‘ Kubernetes API ‘ i
; » EDC Connector : : EDC Connector :
> LOGGER |—> LOGGER
Rabbitmq Rabbitmq
Mapper Mapper
: ML Anomaly : : ML Anomaly :
: Ul - Grafana ; : Ul - Grafana ;
K8s K8S
: Prometheus I : Prometheus :

Figure 6. UC1 /| AC3 component integration

The UC1 application definition and deployment are outlined in Figure 7. The process begins with the definition
of the application services and the data needed through the AC3 GUI. The user can either retrieve and use services
that are already defined in the Service Catalogue or define new services that are to be stored in the Service
Catalogue to be re-used later on from other applications. The GUI also sends the application details to the App
Gateway that will forward a request to the OSR in order to build a combined AppD that includes both the services
of the application, as well as the datasets to be used and the data management application addons that are

© AC32023 Page | 21

D.5.2. Report on Integration the CECCM AC? ig‘i

needed for the application to work. The merged AppD will then be sent to the LCM and to the UC1 Testbed’s

LMS for the final deployment.
Daéaa t&aligmsme OSR LcM LMS UC1 Testbed

< Send Service & Data
Details

Figure |

{ User ’ { App Gateway

Define Application
& Data Needed

Send i Details

Retrieve Service Descriptions.

Translate
machine
readable format
(RDF) descriptions to
application
descriptor

Send Application Desoriptor

Deploy Application —=

Deploy Application —

OSR LCM LMS UC1 Testbed

Figure 7. UC1 application definition and deployment

Catalogue

[User ’ [App Gateway

[Data & Service

The UC1 data processing workflow diagram is illustrated in Figure 8. loT data updates are generated from the loT
Sensors and sent to the provider EDC Connector. The data transfer is initiated by the consumer EDC Connector
with a process that will be further defined in Section 3.4.3. After this process is complete, the provider EDC
Connector starts to forward Sensor Data updates to the Logger deployed as part of the UC1 application. The
Logger then forwards them to the RabbitMQ broker, also deployed by UC1. From there, each data point is
“mapped” from a dedicated service to an internal data triple that is then distributed to the data analysis
components of our application (ML-1 for anomaly detection and ML-2 for value forecasting). The results from
each ML model are again published to the RabbitMQ server as an analysis result. These results, as well as the
original data, are also forwarded to and displayed in the UC1 Ul (based on Grafana) to be made available to our
application’s users.

© AC3 2023 Page | 22

D.5.2. Report on Integration the CECCM AC? =

ML-1
EDC Connector EDC Connector . Anomal M2 ul
{ loT Sensor ’ (provider) { (consumer) [Logger ’ ‘ RabbitMQ Mapper | Deteclic!r; Forecasting Grafana
Request
Data Asset
2 Request
Data Contract
—— Contract Finalized —>)|
<— Start Data Transfer —
Sensor Data
Update —— Sensor Data|Update —————————>
Sensor Data
— rL]deale Sensor Data
Update
Data Point
Mapped
Mapped Datp Point ——%
ML Respilt
ML Resylt
ML Result
ML Resyit
IoT Sensor EDG Connastor EDC Connector Logger RabbitMQ Mapper Anorly it o
(provider) (consumer) 99 PP Detection Forecasting Grafana

Figure 8. UC1 Data Processing Pipeline

3.4 Component Integration Status

3.4.1 Data Management and Connectors

The dataset of UC1 described in Figure 9Figure 9: UC1 Dataset consists of the data streams originating from the
IQU testbed. It is registered in the catalogue following the Gaia-X principles for data sharing and interoperability,
providing all the needed information about its data and its characteristics. It is also providing the asset ID “ucl-
stream”. This id is used through a dedicated data endpoint at http://ds.ucl.ac3.sparkworks.net:18182/protocol,
using the "dspaceconnector" protocol for communication to get access to the stream of data.

To access and utilize the dataset, specific services and connectors are required, as listed in the AC? catalogue
(they will be described in the next subsection):

e Arequired connector is linked, which serves as an intermediary for secure data exchange.
e Additional service offerings are also linked, ensuring that the dataset can be processed, analysed, and
integrated in our application.

The dataset is governed by the BSD-3-Clause license, which allows for redistribution and modification with
minimal restrictions, making it suitable for both academic and commercial applications. Two contact points are
also available for additional information and requests from the two consortium members that curate the data
source.

@prefix dc: <http://purl.org/dc/terms/> .

@prefix geo: <http://www.w3.0rg/2003/01/geo/wgs84_pos#> .
@prefix dcat: <http://www.w3.org/ns/dcat#>

@prefix ns@: <https://ac3-project.eu/#>

@prefix ns1: <https://schema.org/> .

@prefix ns2: <https://w3id.org/gaia-x/development#>
@prefix vcard: <http://www.w3.0rg/2006/vcard/ns#> .

© AC32023 Page | 23

|
D.5.2. Report on Integration the CECCM AC® é

<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-e2354baae959>

a <https://w3id.org/gaia-x/development#Dataset> ;

dc:title "UC1 Dataset 1"@en ;

geo:lat 41.3976242 ;

geo:long 2.1560832 ;

dcat:assetId "ucl-stream" ;

dcat:contactPoint <https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-
4e5d-a216-e2354baae959/Contact1>, <https://catalogue.ac3-
project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-e2354baae959/Contact2> ;

dcat:endpointDescription "dspaceconnector"” ;

dcat:endpointURL "http://ds.ucl1.ac3.sparkworks.net:18182/protocol"” ;

ns@:requiredConnector <https://catalogue.ac3-project.eu/set/resource/service/10333e33-
0875-4869-9f15-7fc7fccd1d48> ;

nsO:requiredServiceOffering <https://catalogue.ac3-
project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fbh3>,
<https://catalogue.ac3-project.eu/set/resource/service/5b6372e6-11a0-47dc-8b1c-
761ff81chba25>, <https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-
9518-efb9f55d3f73> ;

ns1:description "These data are used in the UC1 of the AC3 project. UC1 focuses on
processing and analysing streams of data originating from environmental sensors installed
inside office or residential buildings." ;

ns1:name "IQU UC1 IoT Data 1" ;

ns2:license "BSD-3-Clause”

<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-
e2354baae959/Contact1>

a vcard:Kind ;

vcard:fn "Iquadrat Informatica S.L." ;

vcard:hasEmail <mailto:j.ojeda@iquadrat.com> ;

vcard:hasName "Jhofre Ojeda”

<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-
e2354baae959/Contact2>

a vcard:Kind ;

vcard:fn "Spark Works Ltd." ;

vcard:hasEmail <mailto:tsaradakos@sparkworks.net> ;

vcard:hasName "Themistoklis Sarantakos”

Figure 9: UC1 Dataset

3.4.2 Service Catalogue

In the AC3 Service Catalogue, we have defined a number of services that are designed to retrieve and process the
data generated by the data source of UC1. These are the:

e UCI1 Connector, based on the EDC Connector,
e UCI1 Logger for incoming data to receive new loT measurements,
e UC1 Data Mapper to prepare loT measurements for processing by the loT application.

In the rest of this Section, we will present the descriptions of these services and justify their properties.

Starting with the UC1 Connector, presented in Figure 10, we have the definition of a service based on the
“sparkworks/ac3-connector-http-http-consumer:latest” docker image published in the official Docker Hub. This
application needs a set of environmental variables to be configured and executed, as well as needs to expose a

© AC32023 Page | 24

D.5.2. Report on Integration the CECCM AC® =

set of TCP ports to facilitate communication with the data provider Connector. Regarding the environmental
variables, it needs to get access to the following data:

e Ports to be used for the loaded services. These ports are provided as numerical values.

e PROVIDER_DOMAIN: Domain of the data source provider where the connector should send its requests
to. This domain is provided as a value that the OSR will replace when building the application’s descriptor.

e ASSET NAME: The name of the asset to be requested from the data source connector. This value is
provided as a value that the OSR will replace when building the application’s descriptor.

e CONSUMER_DOMAIN: The domain where this application will be launched and become accessible on
the public internet. This domain is provided as a value that the OSR will replace when building the
application’s descriptor.

Additionally, in the service’s description we include a set of resource limits that are to be used when launching
the service to make sure that the application will fit in the resources available in the deployment environment.
The resource limits include CPU, Memory and GPU requirements and are based on the Gaia-X ontology’s
ContainerResourcelimits. Similarly, an SLA entity is added to define SLAs for the service that AC3 should apply.
These values include serviceAvailability, maxResponseTime and dataThroughput.

@prefix dc: <http://purl.org/dc/terms/> .

@prefix ns@: <https://ac3-project.eu/#>

@prefix ns1: <https://schema.org/> .

@prefix ns2: <https://w3id.org/gaia-x/development#>

<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-7fc7fccd1d48>

a <https://w3id.org/gaia-x/development#ServiceOffering> ;

dc:title "Streaming IoT Connector" ;

nsO :EnvironmentVariable "WEB_HTTP_MANAGEMENT_PORT=28181", "WEB_HTTP_PORT=28180",
"WEB_HTTP_PROTOCOL_PORT=28182", "WEB_BASE_URL=http://192.168.1.215",
"WEB_HTTP_CONTROL_PORT=28183", "ASSET_NAME=@dcat:assetId",
"PROVIDER_DOMAIN=@dcat:endpointURL", "CONSUMER_DOMAIN=@self-ip" ;

nsO :ExposedPort "28180:28180", "28181:28181", "28182:28182", "28183:28183" ;

ns@:image "sparkworks/ac3-connector-http-http-consumer:latest” ;

ns1:description "This is an edc connector for streaming iot data" ;

ns1:name "streaming-connector"

<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-
7fc7fccd1d48/resourceLimits>

a <https://w3id.org/gaia-x/development#ContainerResourcelLimits> ;

ns2 :cpuRequirements 0.5 ;

ns2 :memoryRequirements 512 ;

ns2 :gpuRequirements ©

<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-
7fc7fccd1d48/sla>

a nsO:microservicesSLA ;

nsO:serviceAvailability 99.9 ;

ns@:maxResponseTime "Medium" ;

ns@:dataThroughput "High"

Figure 10. UC1 Connector

© AC32023 Page | 25

D.5.2. Report on Integration the CECCM AC? lgi

The UC1 Logger (Figure 11) is based on the “sparkworks/ac3-amqgp-http-request-logger:latest” Docker image,
which is published in Docker Hub. This application requires minimal configuration, primarily setting up network
ports for communication. Additionally, in the service’s description, we include a set of resource limits that are to
be used when launching the service to make sure that the application will fit in the resources available in the
deployment environment. The resource limits include CPU, Memory, and GPU requirements and are based on
the Gaia-X ontology’s ContainerResourcelimits. Similarly, an SLA entity is added to define SLAs for the service
that AC3 should apply. These values include serviceAvailability, maxResponseTime and dataThroughput.

@prefix dc: <http://purl.org/dc/terms/> .

@prefix ns@: <https://ac3-project.eu/#> .

@prefix ns1: <https://schema.org/> .

@prefix ns2: <https://w3id.org/gaia-x/development#> .

<https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fb3>

a <https://w3id.org/gaia-x/development#ServiceOffering> ;

dc:title "Streaming IoT Logger" ;

ns@:EnvironmentVariable "HTTP_SERVER_PORT=4000" ;

nsO:ExposedPort "4000:4000" ;

ns@:image "sparkworks/ac3-amgp-http-request-logger:latest" ;

ns1:description "This is a receiver for streaming iot data" ;

ns2:ContainerResourceLimits <https://catalogue.ac3-
project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fb3/resourceLimits> ;

ns@ :microservicesSLA <https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-
48ec-90cd-d4a229736fb3/sla> ;

ns1:name "streaming-logger"

<https://catalogue.ac3-project.eu/set/resource/service/d8a6bh514-3b80-48ec-90cd-
d4a229736fb3/resourceLimits>

a ns2:ContainerResourcelLimits ;

ns2:cpuRequirements 1 ;

ns2 :memoryRequirements 1024 ;

ns2 :gpuRequirements 0 .

<https://catalogue.ac3-project.eu/set/resource/service/d8abb514-3b80-48ec-90cd-
d4a229736fb3/sla>

a ns@:microservicesSLA ;

nsO:serviceAvailability 99.9 ;

ns@ :maxResponseTime "Medium" ;

ns@:dataThroughput "High"

Figure 11. UC1 Logger

For the UC1 mapper (Figure 12), we define a service based on the “sparkworks/sw-mapper-ac3:0.5” Docker
image, published in the official Docker Hub. This application requires a set of environmental variables to be
configured and executed, as well as the exposure of a set of TCP ports to facilitate communication with the
message broker and other services. Regarding environmental variables, the service requires the following data:

e RABBITMQ_HOST: Specifies the RabbitMQ message broker host.
e RABBITMQ_PORT: Defines the port for RabbitMQ communication.
e RABBITMQ_USERNAME: Username used for authentication.

© AC32023 Page | 26

)t
D.5.2. Report on Integration the CECCM AC® IQ*[

e RABBITMQ_PASSWORD: Password for authentication.
e QUEUE_IN: The input queue name where incoming data is received.
e QUEUE_OUT: The output queue name where mapped data is sent.

Additionally, in the service’s description we include a set of resource limits that are to be used when launching
the service to make sure that the application will fit in the resources available in the deployment environment.
The resource limits include CPU, Memory and GPU requirements and are based on the Gaia-X ontology’s
ContainerResourcelimits. Similarly, an SLA entity is added to define SLAs for the service that AC3 should apply.
These values include serviceAvailability, maxResponseTime and dataThroughput.

@prefix dc: <http://purl.org/dc/terms/> .

@prefix ns@: <https://ac3-project.eu/#> .

@prefix nsl: <https://schema.org/> .

@prefix ns2: <https://w3id.org/gaia-x/development#> .

<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73>

a <https://w3id.org/gaia-x/development#ServiceOffering> ;

dc:title "Mapper Service" ;

ns@:EnvironmentVariable "RABBITMQ HOST=edgebroker", "RABBITMQ_PASSWORD=xyzpass",
"RABBITMQ_USERNAME=mapperucl”, "RABBITMQ_ PORT=5672", "QUEUE_OUT=mapperucl.mapped",
"QUEUE_IN=mapperucl.data" ;

ns0:ExposedPort "5026:5026", "8026:8026" ;

ns0:image "sparkworks/sw-mapper-ac3:0.5" ;

nsl:description "This is a mapper service for live IoT data." ;

nsl:name "edgemapper"

<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73/resourceLimits>
a <https://w3id.org/gaia-x/development#ContainerResourceLimits> ;
ns2:cpuRequirements 0.5 ;
ns2:memoryRequirements 512 ;
ns2:gpuRequirements 0 .

<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73/sla>

a ns@:microservicesSLA ;

ns@:serviceAvailability 99.9 ;

ns@:maxResponseTime "Medium" ;

ns@:dataThroughput "High"

Figure 12. UC1 Mapper

3.4.3 Data Source Deployment

The Data Source of UC1 is interfaced with AC3® using an EDC Connector developed based on the Eclipse EDC
connector samples. This provider connector is deployed as a containerized application at the testbed’s
infrastructure and is interfaced with the locally running MQTT broker that aggregates the data generated by the
loT devices. Once the connector is deployed, a new asset is registered using a set of parameters that define the
source of the incoming loT updates (MQTT server host, port, username, password, and topic), and the ID of the
asset that will be used for this source. This can be accessed then through the provider’'s management API:

© AC32023 Page | 27

ACC

D.5.2. Report on Integration the CECCM

{
"@context": {"@vocab": https://w3id.org/edc/v06.0.1/ns/},
"@id": "ucl-stream”,
"properties”: {
"name": "iot-data",
"type": "streaming",
}
}

A policy must then be defined on the provider side to govern access to UC1 data. A JSON payload is used to
define a policy that permits the usage of the asset:

{
"@context": {
"edc": "https://w3id.org/edc/v0.0.1/ns/",

"odrl": "http://www.w3.org/ns/odrl/2/"

H
"@id": "no-constraint--1",
"policy": {
"@type": "odrl:Set",
"odrl:assigner": {
"@id": "provider"
b
"odrl:target": {
"@id": "asset-1"
b
"odrl:permission": []
"odrl:prohibition": [
"odrl:obligation": []

}
}

Next, a contract definition is created to govern the data transfer. A JSON payload is used to define the contract
terms, linking the asset to a policy that permits access:

{

"@context": {
"edc": "https://w3id.org/edc/v0.8.1/ns/"

b
"@id": "contract-definition",
"accessPolicyId": "no-constraint-policy",
"contractPolicyId": "no-constraint-policy"

}

The consumer connector then needs to initiate the negotiation of the data transfer to the UC1 AC3 application.

This is achieved using a request payload for the specific asset:

{
"@context": {
"@vocab": "https://w3id.org/edc/v0.06.1/ns/",

"odrl": "http://www.w3.org/ns/odrl/2/"

}

"@type": "NegotiationInitiateRequest"”,
"counterPartyAddress": "http://ds.ucl.ac3.sparkworks.net:8282/protocol”,

© AC32023 Page | 28

https://w3id.org/edc/v0.0.1/ns/
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
https://w3id.org/edc/v0.0.1/ns/
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://ds.uc1.ac3.sparkworks.net:8282/protocol

D.5.2. Report on Integration the CECCM AC? lgi

"protocol"”: "dataspace-protocol-http",

"offer": {
"offerId": "..."
H
"policy": {
“@id": "',
"@type": "odrl:Offer"
"odrl:assigner”: {"@id": "provider"}

"odrl:target": {"@id": "ucl1-stream"},
"odrl:permission”: [],
"odrl:prohibition": [],
"odrl:obligation": []

}

}

Once the negotiation is finalized (status FINALIZED), the response provides a contract agreement ID, which is
used to initiate the data transfer. A JSON payload is used to initiate the data transfer through the consumer’s
management API:

{

"@context": {
"edc": "https://w3id.org/edc/v0.0.1/ns/"

@type": "TransferRequest",

“connectorId": "provider"

"counterPartyAddress": "http://ds.ucl.ac3.sparkworks.net:8282/protocol”,
"“protocol”: "dataspace-protocol-http",

“contractId": "...",

"assetId": "ucl-stream",

"transferType": "HttpData-PUSH",

"dataDestination": {

"type": "HttpData",

"baseUrl": "http://ionos-s1.sparkworks.net:4000"

}

Once the transfer process is initiated, the data starts flowing to the baseUrl provided in the request noted above.
The logger application that is executed there is capable of decoding the received data and forwarding it to the
AC3 application for further processing.

3.4.4 Application Descriptor — OSR

The Graphical User Interface (GUI) and Ontology Semantic Reasoner (OSR) have been successfully integrated to
support the definition, composition, and deployment of applications within UC1. This integration allows
developers to define their application requirements through a structured and intuitive GUI, while the OSR
automates the translation of these inputs into a machine-readable YAML-based AppD. This mechanism ensures
that the required configurations, inter-service dependencies, and deployment parameters are correctly
structured and semantically validated.

The snippets below present a high-level structure of the AppD, which includes metadata, microservices
configuration, network interconnections, global SLA requirements, and deployment constraints. This structure is
generated automatically based on the user input, ensuring both flexibility and compliance with deployment
expectations.

© AC32023 Page | 29

https://w3id.org/edc/v0.0.1/ns/
http://ds.uc1.ac3.sparkworks.net:8282/protocol

|
D.5.2. Report on Integration the CECCM AC® é

To demonstrate how microservices are defined in practice, the code snippets below provide an example
microservice from UC1, detailing its resource requirements, environment variables, SLA targets, and port
mappings. This structure ensures that each service is configured accurately to match deployment conditions,
including location-specific constraints (e.g., edge or cloud).

In scenarios where data sources are involved, like UC1, the OSR queries the Piveau catalogue to fetch relevant
services and connectors. The following snippets illustrate an example of a microservice automatically extracted
from Piveau. These data-related services are appended to the descriptor to ensure the application can access
and process data as expected.

This end-to-end flow streamlines the deployment process across the Cloud-Edge Continuum (CECC), reducing
manual overhead while supporting flexible, scalable application design.

ApplicationName: "UC1 IoT Data Processing"
Version: "3.0"

Microservices_configuration:

Global_SLA:
ServiceAvailability: "99.9%"
MaxLatency: "500 ms"
MaxResponseTime: "Low"
DataThroughput: "High"

Microservices_configuration:

MicroserviceName: "edgeapplication"

Version: "0.4"

Image: "sparkworks/data_manipulator_uc1:0.4"

ID: "edgeapplication”

ResourceRequirements:
Cpu: "4 vCPUs"
Memory: "8Gi"

ReplicaCount: "1"

Ports:
"5001:5001"

EnvironmentVariables:
Name: "RABBITMQ_PORT" Value: "5672"
Name: "RABBITMQ_HOST" Value: "edgebroker"
Name: "RABBITMQ_USERNAME" Value: "m1"
Name: "RABBITMQ_PASSWORD" Value: "7Igk7uul0t"
Name: "QUEUE_OUT" Value: "mapperucl.processed.ml”
Name: "QUEUE_IN" Value: "mapperucl.mapped.ml”

© AC32023 Page | 30

D.5.2. Report on Integration the CECCM

AC

Microservices_configuration:

- MicroserviceName: "consumer"
Version: "latest"
Image: "sparkworks/ac3-connector-http-http-consumer
ID: "consumer"
Ports:
- "28180:28180"
- "28181:28181"
- "28182:28182"
- "28183:28183"
EnvironmentVariables:
- Name: "WEB_BASE_URL"
Value: "http://ionos-s1.sparkworks.net"
- Name: "WEB_HTTP_PORT"
Value: "28180"
- Name: "WEB_HTTP_MANAGEMENT_PORT"
Value: "28181"
- Name: "WEB_HTTP_PROTOCOL_PORT"
Value: "28182"
- Name: "WEB_HTTP_CONTROL_PORT"
Value: "28183"
- Name: "ASSET_NAME"
Value: "ucl-stream"
- Name: "PROVIDER_DOMAIN"

:latest”

Value: http://ds.ucl.ac3.sparkworks.net:18182/protocol

3.4.5 LCM

The UC1 integrates Eurecom's Lightweight Edge Slice Orchestration (LiSO) component to efficiently manage the
lifecycle of its dynamic, container-based applications, along with the robust Cloud Edge Continuum
infrastructure. This strategic decision not only strengthens the orchestration framework already established in
UC2 but also facilitates a seamless integration of processes and encourages the reusability of resources across a

wide range of UCs within the AC3 architecture.

3.4.5.1 Application Deployment

LiSO consists of two primary orchestration layers and an image registry, as defined in D2.3 [6]. It is integrated
into UC1, as depicted in Figure 13 which illustrates a simplified architecture of UC1 to highlight the LCM

integration:

e The Service Orchestration Layer [6] from LiSO is responsible for translating the UC1 AppD generated by
the OSR into Resource Level Objects (RLOs) such as K8s deployment specifications or helm charts. This
translation is a crucial step that enables the seamless deployment of the UC1 microservice-based
application on the edge or cloud LMS. By effectively transforming the AppD into RLOs, LiSO ensures that

the application can fully utilize the resources available in the Cloud Edge Continuum.

¢ Resource Orchestration Layer (ROL) interfaces directly with the edge and cloud K8s LMS using a plugin
mechanism through the LMS northbound interface (NBI), executing resource-level operations such as

deployment, scaling, and termination.

© AC3 2023

Page | 31

http://ionos-s1.sparkworks.net/
http://ds.uc1.ac3.sparkworks.net:18182/protocol

|
D.5.2. Report on Integration the CECCM AC® l%

e Since LiSO fetches and stores container images specified via URLs in the AppD/VNFD files for seamless
service deployment, a Container Image Registry is deployed in the Edge Domain as shown in Figure 13:
Overview of UC1 Architecture, highlighting the integration of LiSO's orchestration layers and image
registry.

Application developer

(]
Intent

Ontology & and
Semantic aware
Reasoner

User plane

Application
Descriptor
j Management Plane

LiSO Northbound APIl

| :
Service LiSO LCM

Orchestrator
RLOs

Resource
Orchestrator

Deploying UCl|Microservices
poyine Cloud Edge

.) Continuum

UCl AC3
Application Microservices

"': Data Manipulator .
(Forecasting)

¢ Data Manipulator .
(Anomaly Detection) - - -

A
‘ { Data Mapper ‘

Data
Connector (:I"'Iessage
(Consumer) Broker

Figure 13: Overview of UC1 Architecture, highlighting the integration of LiSO's orchestration layers and image registry

LMS Edge APL K8s b0 - |

LiSO Container €3
Image Registry kubernetes

LMS Cloud 1ones

kubernetes

- — = = —

([

Note that more details are given in section 4.3.3 about the integration of LiSO with OSR.

© AC32023 Page | 32

D.5.2. Report on Integration the CECCM AC® Q

3.4.5.2 Application Adaptation

As part of our Application Adaptation process, UC1’s LMS must seamlessly join the AC? architecture. To achieve
this, we leverage Eurecom’s LiSO architecture, its ROL component allows the LMS to register asynchronously in
a collaborative, multi-stakeholder environment. Figure 13 illustrates how ROL interacts directly with the
northbound interface (NBI) of edge domain, enabling the LMS to adapt and integrate dynamically into the overall
continuum.

In UC1, the LMS is implemented using K8s, the industry-standard platform for container orchestration. This setup
enables efficient resource management and microservice deployment at the edge and cloud domains in UC1.
K8s oversees both computing resources and the lifecycle of services within the edge domain, ensuring high
availability and fault tolerance.

The LMS in UC1 is responsible for orchestrating and running containerized applications dynamically based on
local resource availability and workload demands. By using K8s, UC1 can take advantage of K8s robust
orchestration features, such as automatic scaling, self-healing (i.e., auto-restarting failed containers), and
resource-based scheduling to optimize local edge domain operations.

The edge and cloud LMSs work closely with the LiSO LCM, which in turn interacts with the OSR component to
obtain AppDs and utilize the instructions to deploy microservices. This setup facilitates the deployment of
applications using these AppDs which is a key output of the User Plane.

This integration significantly enhances the system's capacity to speed up and adapt swiftly to evolving workload
demands, a vital feature for UC1, particularly in scenarios such as real-time environmental data processing and
occupancy detection. Consequently, this advancement enhances overall efficiency and facilitates real-time
execution and processing within UCL1.

3.4.5.3 Migration Algorithm

One of the key components enhancing the architecture is the migration block, which should be integrated into
the LiSO LCM (as shown in Figure 13). The migration module continuously monitors cloud-edge computing
resources to identify hidden patterns that can optimize service allocation between cloud and edge servers. It is
powered by a reinforcement learning (RL) algorithm introduced in Section 5.2 of D3.2.

Following the initial service placement, the migration module proposes resource reallocations to ensure the
application's latency requirements are maintained, especially when resource utilization begins to degrade. By
leveraging real-time data on computing resources at both the cloud and edge levels, along with network latency
metrics, the migration block drives its decisions. The RL algorithm learns and adapts to select the most suitable
server for migration, ensuring consistently low latency performance.

3.4.5.4 Al-based LCM and Decision Enforcement Algorithms

As part of the AC? integration strategy, UC1 incorporates Zero-touch configuration and application management
capabilities. The approach is built upon specifically the work initiated in Sections 5.3.2 and 5.3.3 of D4.1 [4] based
on the two distinct XAl-enabled algorithms developed in WP4. These algorithms can offer UC1 predictive and

© AC32023 Page | 33

D.5.2. Report on Integration the CECCM AC® Q

explainable decision-making capabilities, enabling detailed resource control, proactive scaling, and SLA
preservation.

XAl-Enabled Fine Granular Resources Autoscaler

This algorithm provides a fine-grained vertical autoscaling mechanism for the UC1 application. It leverages
eXplainable Al (XAl) techniques to analyze resource usage trends in relation to their limits and predict when
resources should be adjusted to maintain performance.

The most relevant elements to be integrated into UC1 are: (1) an ML predictor based on XGBoost to detect
potential QoS degradation by analyzing CPU and memory usage patterns; (2) an explainability module using SHAP
to identify the most influential resource metrics contributing to performance issues; and (3) a decision Engine
that leverages SHAP insights to trigger targeted, fine-grained vertical scaling actions (CPU, memory, or both),
ensuring efficient resource utilization and SLA compliance.

The following outlines several key benefits:

Explainability: Operators understand why decisions are made.
Efficiency: Resources are scaled only when and where needed.
Zero-touch: Autonomous operations reduce human intervention.

XAl for Prediction of Infrastructure Usage

This strategy may be incorporated into UC1 to accurately predict future resource utilization (CPU, memory) at
the infrastructure level, facilitating proactive and optimized management decisions through clear and
understandable Al models.

The aim of integrating this algorithm is to reach the following benefits:

Reduces system downtime or degraded performance by anticipating overload scenarios.
Enables resource-aware scheduling, improving overall edge efficiency.

3.5 Remaining Integration

Working on the next steps of UC1, we can summarize them in the following:

Deployment of the UC1 cloud computing location. This is needed for the evaluation of the “Seamless
Microservice Deployment and Migration” and the “Time to process and react to sensor data” scenarios.
The process will follow a similar approach to the one followed in our edge deployment, with a K8s
installation orchestrated using the same tools. The main difference would be the extra resources made
available for our installation, as it would be capable of processing larger volumes of data.

Deployment of edge and cloud computing location monitoring applications. This is needed for the
“Seamless Microservice Deployment and Migration” and “Al-powered Infrastructure Monitoring &
Control Service at the Edge” scenarios. Using the monitoring information, the CECCM would be able to
decide when and what type of migration is needed between the cloud and edge compute locations.
Comparative analysis of the behavior of the UC1 application in the two testbed locations. This is part of
the “Time to process and react to sensor data”. Once we can deploy our application at both locations,
we will be able to assess how much data each location can process and handle, and what the benefits

© AC3 2023 Page | 34

D.5.2. Report on Integration the CECCM AC? ig‘i

are from moving the computation closer to the data sources of our application, instead of transferring
them to the cloud.

e Evaluate the deployment of the UC1 application to the edge and cloud locations of our testbed. This is
part of the “Zero-touch configuration, application management, and data management”, allowing us to
understand how much easier the process of deploying our application is.

3.6 UC1 Integration summary

The table below offers an overview of the integration status for UC1. It summarizes the key components and
their progress, highlighting both the advancements made and the areas still in development.

Architecture component Sub-Component Description Integration status
Allow the application
developer to define its
application components
and SLA.

Allow the generation of
the AppD

We will execute the micro-
services that run at the
LMS Edge network's edge for lower |In Progress
latency and bandwidth
optimisation.

Will execute the micro-
services that cannot run at
the network's edge due to
high resource usage or
data volumes, and latency
is not a constraint.
Similarly, for network
unavailability at the edge.
Hosts the component
Catalogues templates for the Complete
application

1. Manage the
microservices Life Cycle
2. Migration algorithm
that adapts if the edge
resource degrades or
Application and resource moves to the edge a
management micro-service
Zero-touch configuration |Predict and describe
and application infrastructure resources
management, data and implement automated| Not started
management corrective measures.

Application gateway (GUI) In Progress

OSR In Progress

LMS Cloud In Progress

Al-based LCM and
Decision Enforcement

1. In progress
2. In progress

© AC3 2023 Page | 35

D.5.2. Report on Integration the CECCM

AC

Al-Based Resource profile

Describe the resources of
the infrastructure

Not started

Al-Based Application
profile

Predicting Application
Behaviour

Not started

Monitoring the micro-

Monitorin . Not started
& services KPI ot starte
Provides descriptions for
Catalogues . Complete
the available data sources
. Provides access to the
Data Provider Connector) Complete
data made available
Initiates the streaming of
data from the data source
Data Consumer Connector - . Complete
to the application micro-
Data Management .
services
Data Mabpers Transforms incoming data . et
omplete
PP as needed P
Data Manipulator Core application logic Complete

Message Broker

Responsible for
transferring data between
application components

Complete

Table 3: UC1 Integration summary

This summary aims to provide a clear snapshot of the current integration status and the steps taken toward the
full integration of the UC within the project.

© AC3 2023

Page | 36

D.5.2. Report on Integration the CECCM AC® KQT

4 UC2

4.1 Use Case Description

UC2 focuses on the deployment of a sophisticated Smart Monitoring System designed to enhance urban security,
traffic management, and environmental surveillance. This system integrates UAVs, loT technologies, Al/ML
algorithms, and edge computing to enable intelligent, responsive, and efficient monitoring capabilities within a
smart city context.

UC2 demonstrates how real-time data from UAV-mounted cameras and distributed loT sensors can be processed
using edge computing resources and analysed through Al-driven techniques. The CECCM plays a central role in
managing this distributed infrastructure, enabling the seamless execution of surveillance and monitoring
applications across the cloud-edge continuum. The system supports both live video streaming and video-on-
demand (VoD) functionalities, with the ability to store video footage for further analysis and insights generation.
Ultimately, UC2 exemplifies a powerful integration of technologies to support data-driven decision-making for
urban environments.

4.1.1 Use Case Objectives

The objectives of UC2 align closely with the goals of the AC?® framework, focusing on flexible deployment,
intelligent processing at the edge, and automated management of microservice-based applications. The key
objectives include:

e Simplified Application Definition: Use the GUI and OSR to define, manage, and deploy microservice-
based applications easily.

e Zero-Touch Management and Orchestration: Leverage CECCM for autonomous configuration, life-cycle
management, and microservice orchestration using Al/ML.

e Flexible Behaviour Reconfiguration: Dynamically switch between functionalities like object tracking,
activity detection, and surveillance using semantic requests.

e Resilient Microservice Deployment: Enable optimal placement and seamless migration of services across
UAVs and edge nodes in response to resource availability.

e Edge Intelligence and Analytics: Run Al models (e.g., Deepstream, YOLO) on UAVs and edge devices for
real-time object detection, behaviour analysis, and traffic monitoring.

e Environmental Monitoring and Response: Use UAV-mounted loT sensors for real-time tracking of
conditions such as CO; and temperature.

e Scalable and Adaptive Operations: Automatically manage workloads and scale services across distributed
cloud-edge resources to meet changing demands.

4.1.2 UCQ2 Stakeholders
4.1.2.1 Users /System Administrators

The primary users of the deployed UC2 application include stakeholders responsible for urban surveillance and
public safety. These users include building security personnel in residential complexes (e.g., flat surveillance
teams), municipal surveillance operators, and city infrastructure monitoring units. In cases of unusual events or
security alerts, law enforcement agencies such as the police may also access the system to review live video

© AC3 2023 Page | 37

D.5.2. Report on Integration the CECCM AC® Q

feeds or retrieve evidence from stored footage. These stakeholders rely on the system for configuring edge
devices, viewing live streams, receiving real-time alerts, and analysing labelled video or sensor data to ensure
situational awareness and rapid response.

4.1.2.2 Application Developers / DevOps

Application developers are responsible for defining and building the microservices required for UC2 surveillance
tasks, such as video streaming, object detection, and telemetry analysis. Using the CECCM’s GUI, they define
AppD’s that specify service components, resource needs, and deployment policies. The DevOps team handles
the deployment process, leveraging the CECCM’s LCM system to orchestrate service placement across cloud,
edge, and far-edge nodes. This reduces manual deployment effort and ensures high availability and scalability
through automated lifecycle management, including service migration and fault tolerance.

4.1.2.3 Infrastructure Provider

The infrastructure provider supplies and maintains the CECCM platform used in UC2. This includes the setup and
integration of core components such as the GUI, OSR, LCM, and LMS across cloud and edge environments. The
provider ensures that these components are fully operational and compatible with K8s, K3s, and SD-WAN
networking technologies, enabling seamless deployment and orchestration of microservices for the application
developers and DevOps teams.

4.2 Use Case Architecture

The architecture of UC2 is designed to support Al-driven video surveillance by leveraging the AC® framework. It
integrates UAV-mounted and stationary IoT devices with microservice-based video analytics components,
orchestrated through the AC® framework. The system enables distributed processing and real-time insights
across far-edge, edge, and cloud environments. The architecture follows a modular and scalable approach,
relying on containerized services managed by K8s-based orchestration layers and interconnected through SD-
WAN to ensure seamless communication and deployment flexibility.

4.2.1 Use Case Application

The architecture of UC2 involves a smart monitoring system built on UAVs, loT devices, and video analytics using
Al at the edge. The core components include a system administrator interface, edge devices (Raspberry Pi and
Nvidia Jetson), a video analytics system powered by DeepStream and ML, and the AC3® framework. The
administrator interface allows configuration and control of edge devices, including monitoring live streams,
receiving real-time alerts, and viewing segmented images for telemetry analysis. Through this interface, system
administrators interact with the system’s frontend, backend, and analytics microservices, performing actions like
adding or deactivating devices.

At the far edge, UAVs are equipped with Nvidia Jetson devices for on-device video analysis and Al processing,
while Raspberry Pi units handle streaming without analytics capabilities. The video analytics system uses
DeepStream and YOLO for real-time object detection and activity recognition, supporting both live and VoD
functionalities. The AC® framework orchestrates the infrastructure, managing computing resources across the
cloud-edge continuum. It enables service relocation, fault tolerance, and latency reduction through Al-based
orchestration and lifecycle management of microservices. Figure 14 illustrates this setup, where video processing
is efficiently managed across a central server, regional edge servers, and far-edge devices deployed in the parking
lot.

© AC3 2023 Page |38

)t
D.5.2. Report on Integration the CECCM AC® IQ*[

4.2.1.1 Application Components

The UC2 application is composed of multiple microservices deployed across a distributed infrastructure that
includes cloud, edge, and far-edge nodes. These services are containerized and managed using K8s and K3s for
scalability and orchestration. The central server is the key component responsible for handling CRUD operations
related to users, devices, and regions, with data persistence handled via an SQL database such as PostgreSQL. It
serves the frontend API, which allows users and administrators to register devices, launch video streams, upload
videos, and query telemetry data.

The system also includes a regional server that manages loT devices and cameras within designated areas. This
server operates as a reverse proxy and performs local video processing using Nvidia DeepStream. It plays a critical
role in enabling federated learning, where models deployed on regional servers and loT devices are aggregated
into a global model maintained at the central server.

At the far edge, UAVs are equipped with Nvidia Jetson devices capable of performing on-device Al and real-time

video analytics, while Raspberry Pi units are limited to video streaming due to lower processing capabilities.
Microservices requiring high computing resources or low latency are placed on the LMS Edge using the K8s API,
while those with lightweight requirements, such as video capture and object detection, are deployed on UAVs
using K3s. Frontend services are hosted on the LMS Cloud (IONOS Cloud), and the networking between these
distributed nodes is managed by an SD-WAN controller.

Central Server

Activate enpoint camera or IoT devices or launch a stream

Admins

| Users

VoD and live streaming content and metadata|(object detection, ressource usage prediction)
|

Figure 14. Architecture of the video surveillance and environmental monitoring system, illustrating data processing
across central servers, regional edge nodes, and far-edge devices in an urban parking lot.

© AC3 2023 Page |39

D.5.2. Report on Integration the CECCM AC® Q

4.2.1.2 Component Interaction

The interaction between microservices in UC2 follows a structured flow orchestrated by the AC3 framework. The
process begins with the application developer, who uses a GUI to define the application components, their
interdependencies, and SLA requirements. This information is submitted in the form of an AppD, which is then
processed by the OSR. The OSR interprets the semantics of the descriptor, validates dependencies, and ensures
policy compliance before handing it over to the LCM.

The LCM coordinates the deployment of services to the appropriate infrastructure layer—cloud, edge, or far
edge—based on available resources and runtime policies. It manages the full lifecycle of microservices, including
initial placement, scaling, migration, and failure recovery. To interconnect the distributed computing nodes, the
LCM uses the SD-WAN controller through its NBI to establish flow configurations and ensure seamless
communication across the continuum. Monitoring tools are integrated to track microservice KPIs, while Al-based
algorithms are used for placement decisions and predicting application and infrastructure behavior. For example,
if a far-edge node’s resources degrade, the system can trigger a migration to maintain service continuity.

The communication between distributed components is facilitated by LMS Networking via the SD-WAN
controller, which enables connectivity across cloud, edge, and far-edge clusters. This setup ensures that services
can interact reliably despite dynamic resource conditions. Metadata from object detection, sensor readings, and
activity analysis is processed and fused across these layers, allowing administrators and users to access real-time
insights via the frontend API. Access control is enforced by a dedicated authorization service, ensuring that only
permitted users can interact with specific components or data streams.

4.2.2 UC Testbed - Hardware and Software

As previously mentioned, the UC2 application is based on a microservices architecture and will be deployed
across a multi-cluster environment connected between them using SD-WAN. In this section, we describe the
hardware and software setup of the testbed used for this deployment. The whole picture is presented in Figure
15. The testbed spans two geographically distinct locations: the IONOS cloud data centre located in Germany,
and EURECOM's edge and far-edge infrastructure located in France.

4.2.2.1 |Infrastructure Details

IONOS Region

The IONOS infrastructure consists of three main clusters and is built on machines with 32 GB of RAM, 16 CPU
cores, and approximately 120 GB of HDD storage. All nodes run Ubuntu 22.04 as the operating system.

e Management Cluster:
o This s a single-node cluster with 4 CPU cores, 8 GB of RAM, and 20 GB of HDD storage. It runs a
vanilla K8s setup and is dedicated to hosting core management software such as the Al-based
LCM (LiSO, in this UC) and the SD-WAN controller.
e SD-WAN Edge Cluster:
o Also, a single-node setup, this cluster has 4 CPU cores, 8 GB of RAM, and 20 GB of HDD storage.
It runs the SD-WAN edge component, enabling connectivity between the cloud cluster and other
infrastructure setups.

© AC3 2023 Page | 40

D.5.2. Report on Integration the CECCM AC® Q

e Cloud Cluster: This is a two-node cluster
o Control Plane Node: Equipped with 4 CPU cores, 8 GB of RAM, and 64 GB of HDD storage, this
node hosts core K8s components (such as the API server) along with AC3 components like the
K8s LMS and the VIM adaptation agent. A local DNS server is also deployed to manage domain
name resolution for external services.
o Worker Node: This node, with 10 GB of storage, is dedicated to deploying user-facing
microservices such as the NGINX reverse proxy and the application frontend.

This two-node design was chosen to separate the execution of application components from AC3 management
components.

The cloud cluster is connected to the SD-WAN cluster through a local area network (LAN) provided by IONOS.
EURECOM Region

The second deployment region is hosted by EURECOM and is composed of two sub-regions: the EURECOM Edge
and the EURECOM Far Edge.

EURECOM Edge

The EURECOM Edge infrastructure consists of approximately 500 GB of storage, 68 GB of RAM, and 22 CPU cores,
distributed across two clusters:

e SD-WAN Edge Cluster:

This cluster is a single virtual machine with 2 CPU cores, 4 GB of RAM, and 20 GB of storage. It is dedicated to
running the SD-WAN edge component, providing connectivity between the EURECOM edge and other regions.

e Edge Cluster:

This is a single-node cluster running on K3s. It includes 20 CPU cores, 64 GB of RAM, and 480 GB of disk space. It
hosts both AC® components—such as the K3s LMS and the VIM adaptation agent—and selected application
microservices, including the database backend. Due to the relatively higher resource availability compared to the
far edge, logical isolation between AC3 components and application microservices is maintained using K8s
namespaces.

Similar to the IONOS setup, the SD-WAN edge and edge clusters are interconnected via a LAN provided by
EURECOM.

EURECOM Far Edge

The second part of the EURECOM region is the EURECOM Far Edge, represented by a single-node K3s cluster
running on an NVIDIA Jetson Orin device equipped with a GPU. This node has 64 GB of RAM and 64 GB of storage.
This cluster is used to deploy the same AC3 components as in the edge cluster—specifically, the K3s LMS and the
VIM adaptation agent—as well as the image processing service. As in the edge setup, logical isolation is enforced
using K8s namespaces to separate AC3components from application-level services. For connectivity, the far-edge
cluster, running on the UAV, is connected via a 5G base station deployed at EURECOM, enabling communication
with the other parts of the infrastructure.

© AC3 2023 Page | 41

|
D.5.2. Report on Integration the CECCM AC® l%

Management cluster

l 0 NU S Mgmt-cluster-master-ﬂod;\"

Application Life Cycle Manager
(LisO)

T o

.

SD-WAN .
Controllers i

= Sd-wan Edge Machine “\ I O/N 0 S \

Fee=======sc=e=a- i \ Sd-wan Edge
EURECOME, SD-WAN Edge <, Machine
: - ge | 1
1. - S——_] J e ——————— - 1
""""""""" T E— ™ ” SD-WAN Edge '
4 L 1
R Pl 1 P T ____________________
| | Adaptation Agent | Local Managed : . i I :
' DNS 6 —
: oSy l
i LMSAPIK3S e F--=======t=------- o
! - ' Microservices-J ; Local Managed
|+ - - - J Adaptation Agent | |12¢# 0

1]
1]
1 1
1]
\ Edge-Cluster-Node / I R 1 l 1
- - vowen ! ' '
1
P N Edge- EURECOM R 1 LUSAPIKES :
: Core 1 lv Y [
""") i ' [Kube-aPiserver | [corebns ||
(@) S AT A :
\—{ UPF lnstanceJ<— ((A) Cloud-Cluster-Master-Node
\ A S
= T 1 1
1 1
. <> .
1 1
------------------------------- 1 HTML 1
Adaptation Agent ’Lmln":;'-ﬂned\ @a Cloud-Cluster-worker-nodel
LMS APIK3S Cloud-IONOS
= amespace
Far-Edge-Cluster-Node
Far Edge
_ J Ionos AC3 Components 9 K8s Q. Backend
(Eurecom SdWan - Frontend
Components K3s =71 Database
D Far-Edge Device [] Others (LAN LANs @2 Image m Nginx
S— Network Processing
[Namespaces| i ' Nodes overlays

Figure 15. Testbed Architecture

4.3 Component Integration Design

The UC2 smart monitoring application leverages multiple components of the AC3 CECC Manager framework,
working together as illustrated in Figure 16, where the implemented AC3? components are highlighted. These
components orchestrate UAV-based video analytics and sensor data streams across the cloud—edge continuum.

© AC32023 Page | 42

D.5.2. Report on Integration the CECCM AC? =

Application developer

| ke
' .
{ Wpplication gatewsy

Horthbound API Engine

-

ontology & and EFI
Catalogues senantic sware collection
.\} J Bpasnrar and exposere ||

Al-Bazed LCM/

Monitoring } THED
.I|- = | .
l"l : Becision
AL cl.::ud ﬁ:;::?“ En h;;.:::r__-pm
. I:lauu|==.l1‘-u‘ Profile b v von |

Adaptat
nptatian Meszuree Broker
Catuway

I
-

Ekdaptation agents/

VIH Plugins iU
Discovery
1 luaga 1 L
Hessurce Bexosron . Eamomrce
MBI erure| | MBI aopasurs | "% aypesurs
LMS LMS LMS

Figure 16. Mapping of the ACG Component Architecture to the Current Implementation in UC2.

The UC2 application is composed of five microservices, each deployed in a suitable region based on its role and
interdependencies. For example, the Frontend microservice needs to be accessible over the internet but does
not require low-latency access to other microservices or proximity to camera devices. Therefore, deploying the
frontend in the cloud conserves edge resources, which can then be allocated to microservices that require edge
deployment. A similar rationale applies to the Nginx microservice, which acts as a gateway by exposing the
services to end users through a single point of access.

The DeepStream microservice requires direct access to the camera to stream video and utilizes the NVIDIA Jetson
GPU for traffic analysis. It sends both the video stream and the object detection results to the Backend service.
Therefore, this microservice is deployed on the drone, which is equipped with both the camera and the Jetson
device. The placement of the microservices and their dependencies is illustrated Figure 17.

© AC32023 Page | 43

D.5.2. Report on Integration the CECCM AC® KQT

Frontend service

R~
Database
<& / User browser
— |

Deepstream

service

Backend
Far Ed service
Domaiae Internet
(Jetson device on Drone) Edge Domain Cloud Domain

(EURECOM) (ToNDS)

Figure 17. Microservice Architecture and Placement in UC2

To deploy the application, the implemented CECC Manager components are used, as illustrated in Figure 18.
First, the application developer uses the northbound API (via the GUI) to define the UC2 application using the
available application and data source blueprints. Once the application composition is submitted, the request is
processed by the OSR. The OSR validates the UC2 AppD’s and policies, then, merges the service and data
definitions into a single AppD, ensuring that all semantic rules and requirements are met.

Next, the application creation request is forwarded to the LCM, which selects the appropriate infrastructure
(cloud or edge) for each microservice and initiates the application onboarding process in the selected regions.
To achieve this, the LiSO LCM sends requests to the Virtual Infrastructure Manager (VIM), which acts as the
Decision Enforcement component.

Each deployment site has a corresponding Adaptation Agent, implemented as a VIM. The latter manages the
local management systems (e.g., K8s and K3s) and image registries to onboard the microservice images. Once
the application is onboarded, LiSO configures the inter-cluster network via the SD-WAN Controller, ensuring that
microservices deployed across different regions can communicate with each other.

Following onboarding, LiSO begins the application instantiation process. As with onboarding, LiSO's requests pass
through the VIM Manager and are executed by the VIM to instantiate the microservices across the three target
clusters: IONOS (Cloud), EURECOM Edge, and onboard the drone (i.e., far edge) equipped with an NVIDIA Jetson
device.

Finally, LiSO completes the network configuration by exposing the user-facing microservices to the internet
through the SD-WAN Controller, which updates the SD-WAN Edge network rules accordingly. Once the
application is fully instantiated, LiSO returns information about the running instances, including IP addresses,
ports, and the links to access the internet-exposed microservices.

While the application is running, the Monitoring System, described in the next section, continuously collects
performance metrics from the deployed services and infrastructure; for example, container CPU/memory and
streaming framerates from the Jetson nodes. These metrics feed back into the LCM to support application
adaptation via resources scaling or microservices migration.

In summary, the CECCM components (Service Catalogue, OSR, LCM, Monitoring and Data Management) enable
the UC2’s video analytics services to run continuously and migrate seamlessly across UAV, far-edge, and cloud
nodes as conditions change.

© AC3 2023 Page | 44

D.5.2. Report on Integration the CECCM

IONOS CLOUD

EDGE Cluster

Drone Cluster

i ' P 11| sowan
Northbound OSR Al-Based Decision SDWAN Adaptation| Kubernete, SDWAN | | Adaptation Hubernetes | Adaptation K3s Edge
API Engine LCM/ LISO | Entorcement/ cul i Agent/ VIM LMS I Agent/ VIM LMS || {lAgent/VIM | LMS | EURECOM
: VIM Manager i R | - 5
Application |
i Creation —* | : i ; :
i reg lidate Request, i ; i
structure app |
descriptor i : :
Create application H
| <Application i i
Descriptor> re Application
i placement on the | :
selected locations : :
oOnboard i ; ; i
DB, Backend m, : i Onbodrd :
in <Edge neu_.;u.u.§ Onb%?;?ﬂg:r::;;?nd] containers;images H ;
: req m —_—
PB,Backend ms DB,Backend ms i | :
k% Onboarded Microservices
H g : : onboatded :
Oniboard Deepstream : Onboard Deepstream
meim Onbpard Deepstréam containers images
<F§1r Edge region= req microservice ’ ' '
Deepstream m Déepsneam ms *
“—Onhoarded :Onboarded H Deepstream ms
| onFar Edge : anboarded
Onhoard frontend, nginx : : :
‘———ms—>__ Onboard Frontend,Nginx__| Onboard H H

in<cloud region= req microgervices

i Microservices

Frontend,Nginx ms

containers images

Microservices

« Onboarded -

Onbgarded
on cloud :

Setup inter-cluster
networking

onhoarded

Setup IbNOS cloud overlay

and networking rules »
IONOS SDWAN edge
FDN\QUI’EU Setup EURECOM edge overlay

. and networking rules

EURECOM SDWAN edge

: Inter-cluster network
configured

H Instantiate
‘DB,Backend m§

configured

Irlstan:ﬁale DB,BacKénd

in <Edge region
: req

?DB,Backend ms

rgnicroserwceS :

DB,Backend msjs

i Instantiated
i on Edge

Instantiate Deepstream
H msim >

‘Tnstantated

Instantiate Deepstl

Instantiafe DB,
Backend workloads
»

-
Microservices

Instantiated

<F$ir Edge region= req

microservice |

Deepstream ms:

mstantiate Deepsiream
workloads”™;

Deepstream ms

Deepsiream mse
*Onboarded
i on Far Edge

IIistanliale frontend,
i onginx msin

» Instantiate F:mntend_Ngimx

iInstantiated

Insrénciale

4cloud region= req

frontend,nginx ms

microservices

Frontend,Ngmx ms

Frontend,Nginx
workloads

Microservices

Instenciated
on cloud
H Expose Frontend
H ms to intermnet

Instefciated

Instenciated

Exipose Frontend

ns to internet |
Frontend ms |

Frontend ms
exposed to internet

Application deplciyed

; <ms configss
A'Eplicalion deployed |
network access ;
information=>

interngt address and port

“Instantiated :

Figure 18. Detailed Workflow for UC2 Application Deployment Using the AC3 CECC Manager Framework

© AC3 2023

Page | 45

|
D.5.2. Report on Integration the CECCM AC® l(;l

4.4 Component Integration Status
4.4.1 Application Interface

The user-facing application developed for UC2 offers a comprehensive and interactive interface designed to
manage the UAVs, monitor system performance, and review real-time and historical detections. The interface
has been developed with usability in mind, providing a smooth user experience for system administrators and
operators.

Figure 19 shows the user authentication screen, which provides a secure login experience enhanced with
CAPTCHA verification to ensure bot protection.

ACtC

Signin

Surveillance System

Figure 19. UC2 User Authentication screen

After successful login, users are directed to the Regions dashboard, as illustrated in Figure 20. Here, they can
create and manage edge servers by filling in configuration details such as IP address and status.

© AC32023 Page | 46

Y
D.5.2. Report on Integration the CECCM AC? é‘

Create a New Edge Server

DemoServer

192168312

Figure 20. UC2 Edge Server configuration screen

Figure 21 demonstrates the process of adding a far edge device to an existing edge server. Users can define the
device’s location, type, and associated sensors through a structured form. Once saved, the devices appear in the
system and can be controlled from the interface.

Add a New Far Edge Device

Figure 21. UC2 Far Edge Server configuration screen.

© AC32023 Page | 47

Y
D.5.2. Report on Integration the CECCM AC® é?

Figure 22 presents the device management screen, where users can view the status of devices, including their IP
address and operational status

. Control actions such as viewing live data or deactivating a device are available
directly from this interface.

Surveillance System

© Regions

192168.3119030035

|

Figure 22. UC2 device management

Figure 23 highlights the real-time detection and monitoring dashboard, which includes live video feeds with

bounding boxes for object detection (e.g., people, cars, signs), system resource usage (CPU, GPU, memory), and
a dynamic timeline chart visualizing detection events over time.

Surveillance System

e

Figure 23. Real-time detection and monitoring dashboard

© AC32023 Page | 48

)
D.5.2. Report on Integration the CECCM AC® I(;l

Finally, Figure 24 showcases the query and archive review panel, allowing users to filter, retrieve, and browse
through large volumes of historical detection events using attribute-based filters. Results are presented in a
paginated grid of annotated snapshots, enabling deep forensic analysis.

Surveillance System
© Rogions

£ Queries

@ Settings

Figure 24. Query and archive review panel

4.4.2 GUI for Developer (Application Gateway)

The GUI, also known as the Application Gateway, is the primary interface through which application developers
define their application deployment configurations. It offers two modes of interaction:

e Interactive Form-Based Input: Users can fill in an intuitive multi-step form that captures all necessary
information, including application metadata, microservices configuration, networking preferences, and
SLA constraints. This form is designed to simplify the process of describing a complex microservice-based
application, even for non-expert users.

e Structured JSON Upload: Alternatively, users can upload a predefined JSON file conforming to the AppD
schema. This method allows advanced users to work in a more automated way, reusing or customizing
existing configurations.

Figure 25 illustrates the first step of the form, where the user provides basic application metadata such as the
application name and version. It should be noted that even though we are showing the GUI interfaces only for
UC2, all UCs will use this GUI as an entry point to AC® CECCM to define, configure, and deploy their respective
applications.

© AC32023 Page | 49

D.5.2. Report on Integration the CECCM AC® =

Create New Application Profile

Fill out the form fields below. If you have an existing application descriptor, click the arrow and upload it.\V

G Application 2

* Application Name @

w
N

UC2 AC3 Surveillance System

* Version @

1.0.0

* Description @

Real-time surveillance system for monitoring video feeds and analytics.

Upload File

Next

Figure 25. UC2 Application metadata input

Figure 26 shows a deeper level of interaction, where the user configures individual microservices by specifying
container image, resource requirements, environment variables, and service-specific SLAs.

© AC32023 Page | 50

)
D.5.2. Report on Integration the CECCM AC® I(;i

— Microservice 1

* Microservice Name

backend

=1D

service-001

Service Type &

* Purpose &)

Manage surveillance operations and real-time video processing.

Image ©

fingletek123/ac3-uc2-backend:2

Version &

1.0

Figure 26. Microservices configuration form

Figure 27 demonstrates how users define network interconnections, describing which services communicate
with each other, the protocol used, and expected network SLAs.

v v v v e Network Traffic And Load
* Traffic Type C

HTTP Requests, RTSP, websocket

Time-Based Routing

Off-peak hours traffic rerouted to backup servers.

v Microservice Interconnection

* Source

backend

* Destination

database

* Protocol @

TCP

*Port

5432

> Connection SLA

Remove Interconnection

Figure 27. Networking Graph Configuration

© AC32023 Page | 51

D.5.2. Report on Integration the CECCM AC? (Qﬂ

These inputs are then passed to the OSR, which handles the backend logic for descriptor generation.

4.4.3 Ontology and Semantic Reasoner

The OSR is a central component responsible for translating high-level user inputs into a standardized, machine-
readable AppD, expressed in YAML format. This descriptor captures all aspects of the application, including
microservice definitions, interconnections, SLAs, and deployment constraints. Upon receiving the structured
input from the GUI, the OSR performs a number of operations:

e Validation of the input data based on predefined ontologies and JSON schemas.

e Composition logic, which includes interpreting dependencies, aggregating resource requirements, and
organizing networking rules.

e Retrieval of complementary services if needed from Piveau, especially for data connectors or utility
services linked to the specified datasets.

e Descriptor generation, where all this information is synthesized into a deployable YAML file compatible
with the Cloud-Edge Continuum infrastructure.

Following is the high-level structure of the UC2 AppD generated by the OSR. It includes application metadata, a
microservices configuration section, networking information section, and SLA specifications.

ApplicationName: "Surveillance System"
Version: "1.0.0"

Microservices_configuration:

Global_SLA:
ServiceAvailability: "99.9%"
MaxLatency: "500 ms"
MaxResponseTime: "Low
DataThroughput: "High"

Following is a concrete example of the Deepstream microservice configuration. This includes CPU/GPU
requirements, image name, exposed ports, and required environment variables for Al-based video analytics.

e MicroserviceName: "deepstream”

Version: "1.1.0"
Image: "capy8ra/ac3-uc2-ds: 28"
ID: "deepstream”
Dependencies:
- "backend"
- "database"
ResourceRequirements:
Cpu: "4 VCPUs"
Memory: "16Gi"
Storage: "N/A"
Gpu: "NVIDIA GPU (specific model based on throughput)"”

© AC32023 Page | 52

)
D.5.2. Report on Integration the CECCM AC® I(;l

MicroservicesSLAs:
ServiceAvailability: "99.9%"
MaxResponseTime: "Low" DataThroughput: "High"
ReplicaCount: "1"
EnvironmentVariables:
- Name: "LOG_LEVEL"
Value: "INFO"
- Name: "DB_HOST"

Value: "db"

- Name: "DB_PORT"
Value: "5432"

- Name: "DB_NAME"
Value: "ac3"

- Name: "DB_USER"
Value: "postgres"
- Name: "DB_PASSWORD"
Value: "root"
- Name: "NO_DISPLAY"
Value: "1"
Protocol: "TCP/RTSP"
InternetAccess: "false"
GeographicalArea:
Region: "Edge"
LocationType: "edge"

Following is the networking graph extracted from the descriptor, illustrating service-to-service communication
paths and the corresponding SLAs for each connection.

Networking_graph:
e Source: "backend"

Destination: "db"

Protocol: "TCP"

Port: "5432"

ConnectionSLAs
Latency: "Less than 500 ms"
Availability: "99.9%"
Bandwidth: "High"
ErrorRate: "Less than 1%"

e Source: "frontend"

Destination: "deepstream"”
Protocol: "TCP"
Port: "8585"
ConnectionSLAs:
Latency: "Less than 500 ms"
Availability: "99.9%"

© AC32023 Page | 53

D.5.2. Report on Integration the CECCM AC® KQT

Bandwidth: "High"
ErrorRate: "Less than 1%"

e Source: "frontend"

Destination: "backend"
Protocol: "TCP"

Port: "8000"

ConnectionSLAs:
Latency: "Less than 500 ms"
Availability:
"99.9%"

Bandwidth: "High"
ErrorRate: "Less than 1%"

By automating the composition and validation of AppD’s, the OSR enables scalable and accurate deployment
across the CECC infrastructure. The generated descriptor is ultimately passed to the LCM for deployment.

4.4.4 LCM

In UC2, application LCM functionalities are implemented using the LiSO network and service orchestrator
developed by EURECOM. LiSO exposes a northbound REST API that enables the orchestration of services and
their constituent applications. Services are described using a Network Service Descriptor (NSD), which defines
the specific configuration of microservices, their interdependencies, and the infrastructure and resource
requirements of the applications.

As illustrated in Figure 28, LiSO is composed of several key components, including the orchestrator, VIM manager
and the VIM. The VIM manager translates high-level orchestration requests into a series of object creation or
deletion operations for the underlying VIM. While the VIM interacts directly with LMS APIs such as K8s, K3s, and
OpenShift. Additionally, the VIM handles the management of container images for microservices and oversees
local image registries.

4.4.4.1 Application Deployment

LiSO exposes its rest API to the OSR, meaning that any application creation or deletion is triggered by the OSR.
In order to enable the communication between the two components, we introduce a translator at the OSR level,
the role of the translator is to translate the AC3 application descriptor into an NSD. The translator sends the
resulting NSD as part of the application creation request to LiSO.

At the LiSO level the NSD is decomposed by microservice, and each microservice follows the onboarding and
instantiation steps.

For the onboarding, LiSO constructs the microservice package, which is a descriptor of the microservice. LiSO
requests the VIM Manager to onboard the microservice. The VIM manager then sends a request to the VIM to
push the microservice image to the local registry used at the deployment location and create a namespace (in
the case of K8s LMS) or a project (in the case of OpenShift LMS) for the application. The microservice container
image can be collected in three different ways: either a container image repository available at a registry

© AC3 2023 Page | 54

D.5.2. Report on Integration the CECCM AC? =

accessible to the VIM, a Git repo with a Dockerfile so that the VIM can build the image and push it locally, or as
a tar file location containing a save of the container image (the output of docker save).

At the instantiation stage, LiSO creates an instance ID for the application; an onboarded application can be
instantiated multiple times; each instance has its own ID and is independent in its lifecycle management from
the other instances. Once the instance ID is created, a request is then sent to the VIM Manager, which will
request the VIM to create all the objects needed to run the application, including services, deployments,
configmaps, volumes, etc. Once the objects are created, LiSO ensures that the application’s microservices are in
a running state. This check goes through the VIM Manager and the VIM. After the application is running, LiSO
receives all information about the microservice, including network configuration.

Figure 28 summarizes the AppD translation from the OSR to K8s Objects.

LiSO Network Service Descriptor

{
"name": "Surveillance System",
. "yersion": "1",
OSR AC3 App Descriptor "provider®: 2%,
; -) "checksum": "ignored",
ApplicationName: "Surveillance System” "nsdId": "ac3-uc?”,
Version: "1.0.8" "userDefinedData": {
i . i) "regionId": [i
Microservices_configuration: "gdge", "jonos" o Kubernetes Objects
- MicreserviceName: "deepstream” 1, iy
\Fersmni "L.1.e” . "appInstantiationOrder”:[
Image: "capyBra/ac3-uc2-ds:35 "database", "backend", "deepstream", "frontend", "nginx"
ID: "deepstream” 1 1
Dependencies:
P - wbackend® képp[)"; [DeepStream-deploymem.yaml
- "database" {
ResourceRequirements: "appName”: "deepstream”,
Cpu: "4 \I:'(Pug:: "appDNSName": "ds.test.dns", —@- DeepStream-service.yaml
Memory: "16Gi "virtualComputeDescriptor": [

Storage: "N/A"
Gpu: "NVIDIA GPU"
ReplicaCount: "1"
EnvironmentVariables:
- Name: "LOG_LEVEL"
Value: "INFO"
- Name: "DB_HOST"
Value: "db"
- Name: "DB_PORT"

{
"virtualCpu": { .
"numvirtualCpu": 6.5 Deepstream-cormgmap.yaml
1
"virtualMemory®: {
"virtualMemSize": 512 %_ DeepStream-volume.yaml|
1
1
Value: "5432"

1,
"swImageDescriptor®: [,@_ DeepStream-volume.yam|
- Name: "DB_NAME" {

Value: "ac3" - —— - - ———— "swImage": "internal///production.imagehub/ac3-uc2-ds:35",
- Mame: "DB_USER" "configuration": [
Value: "postgres"
- Name: "DB_PASSWORD" "name”: "LOG LEVEL",
Value: "root" "yalue": "INFO"
- Name: "NO DISPLAY"
Value: "1"
Protocol: "TCP/RTSP"
InternetAccess: "false" 1,
GeographicalArea: "ports”: [
Region: "Edge"
LocationType: "edge” "containerPort": 8585,
"protocol”: "TCP",
"exposeTo": "CN"
+
Iy
1
o
"appDId": "deepstream",
"appRegion”: "Edge”

'

.

Figure 28. Translating the AC3 AppD to a LiSO Network Service Descriptor

4.4.4.2 Application Adaptation

LiSO uses a monitoring system and resource exposure, as shown in Figure 29, to continuously monitor the
running application and the underlying infrastructure. In terms of application adaptation mechanisms, LiSO
implements two mechanisms:

e Application Fault Detection: LiSO is capable of detecting application instance failures and can

© AC32023 Page | 55

)
D.5.2. Report on Integration the CECCM AC® I(;i

automatically trigger the redeployment of the affected application. This mechanism relies on periodic
polling of the LMS API to monitor the status of running workloads. For example, in a K8s environment,
LiSO checks whether the pods are in the “Running” state. If they are not, and the issue persists beyond
a predefined time interval, LiSO initiates the recreation of the application to restore its functionality.

e Detection of Application Performance Degradation: LiSO leverages monitoring data to detect suboptimal
resource configurations, particularly when the resources allocated to an application are insufficient for
its proper functioning. Depending on the preferences set by the application owner, LiSO can then:

o Mark the application's configuration as insufficient. As a result, any subsequent status requests
for the application will include a "resources-misconfiguration": "true" field in the response.

o Invoke the XAl-enabled vertical resource autoscaler, developed in WP4, to dynamically adjust
the application's resource allocation and correct the misconfiguration.

User Plane

Translator

App and Resources
Management

VIM Manager

Virtual Infrastructure

_ Manager
Adaptation Layer
& A
CECC Plane é N
- O

— :Interfaces = : Monitoring metrics

Figure 29. Detailed Architecture of LiSO and Its Mapping to AC3 Framework Components

© AC32023 Page | 56

D.5.2. Report on Integration the CECCM AC® Q

4.4.4.3 Al LCM algorithms
LiSO’s decision engine incorporates Al/ML algorithms to optimize lifecycle management, employing:

e Predictive Analytics: Historical telemetry (CPU load, network throughput, sensor trends) is fed to a
prediction model that forecasts future workload and resource demand. Based on these predictions, LiSO
proactively scales the application’s resources.

e Microservices Migration: The main algorithm we will showcase in UC2, implemented by LiSO, is the
microservice migration mechanism, which is thoroughly detailed in deliverable D3.2. The core idea is
that when an edge node becomes overloaded or encounters network degradation, LiSO can perform live
container migrations or reassign tasks to alternative nodes with available resources. This helps maintain
consistent frame rates and low latency.

The outputs of these Al algorithms feed directly into LiSO’s orchestration decisions, effectively closing the loop
of continuous learning and orchestration.

4.4.5 Monitoring

4.4.5.1 Monitoring Framework Integration

In order to gain comprehensive insight into the performance of managed applications and the underlying
infrastructure resources, LiSO employs a custom monitoring framework. This framework is designed to provide
end-to-end visibility into application performance across all infrastructure locations where the application's
microservices are deployed.

The monitoring system uses a metrics collector for each application at each deployment location. These local
collectors gather performance metrics relevant to the application instance in their specific region. All keys UC2
metrics (resource usage, frame rates, sensor readings, etc.) are collected from local monitoring systems available
at the cluster level, such as Prometheus. Then, the collectors enrich the collected data with contextual
information such as the application ID, microservice ID, and deployment location. The structured metrics are
then sent to a Kafka message broker.

From Kafka, a central collector, one per application, retrieves metrics from all deployment regions, aggregates
them per service, and forwards the results to an external RabbitMQ broker. This real-time metrics stream enables
application owners to access up-to-date performance data, which is particularly useful when real-time
monitoring is required. In parallel, the application metrics collector stores the metrics in an InfluxDB time-series
database. These stored metrics are then visualized through custom dashboards, tailored per application or per
application owner, using an external Grafana server. The LCM module has access to this database and can query
metrics across different applications as needed.

Note that both the metric collection streams and their exposure are isolated per application. Access to the
external Grafana and RabbitMQ instances requires valid credentials, ensuring data privacy and enabling secure
multi-tenancy.

4.4.5.2 Monitoring Metric

In UC2, we focus on the metrics that most accurately reflect the application's performance, including:

e Resource Usage: CPU and GPU utilization, memory usage, and disk I/0 for each node and container.

© AC3 2023 Page | 57

D.5.2. Report on Integration the CECCM AC® KQT

e Network Metrics: Throughput and packet rates on network interfaces; latency and bandwidth usage
between edge nodes.

e Application Performance: UC2-specific KPIs such as video frame rate (frames per second), end-to-end
latency, and frame-encoding quality.

e Sensor Values: Relevant sensor readings (e.g., camera frame timestamps, environmental sensor values)
generated by UC2 devices.

e Service Health: Counters for active connections, request rates, error rates, and container restart counts.

All metrics are presented on Grafana dashboards. Operators can view CPU/memory usage over time alongside
the application’s frame rate, making it easy to correlate load with performance. Alerts can be set on these metrics
(e.g., “frame rate < 25 fps” or “CPU > 90 % for 5 min”) to trigger notifications or further LiSO actions.

4.4.6 Compute LMS

K8s has been adopted as the Compute Local Management System for UC2. We have deployed a lightweight K8s
distribution, K3s, at the far-edge site (on the NVIDIA Jetson/RPi hardware) and a K8s cluster in the central cloud.
LiSO is connected to these clusters’ APls and is capable of launching container pods on either. The initial
deployments (video analytics and data services) ran successfully on the Jetson nodes, confirming that the
Compute LMS is functioning. Resource profiles of the clusters (CPU, memory, GPUs) have been entered into the
CECCM so that LiSO can target the appropriate nodes. In short, the compute environment is in place and
recognized by the CECCM: UC2 services can be instantiated on the K8s-managed edge and cloud as needed.

4.4.7 Network LMS

We use the SD-WAN controller and SDWAN Edges at each region as the network LMS for the UC2. The SDWAN
Controller provides an APl to the LCM to programmatically configure the network. The configuration includes
interconnecting the microservices running in different regions: IONOS Cloud and EURECOM Edge. Further, the
SDWAN Controller also allows the LCM to expose a microservice to the internet. All the configurations are
enforced at the SD-WAN Edges level, where overlay networks are created for intra-cluster communication and
use DNAT rules to expose application ports to the internet.

4.5 Remaining Integration
4.5.1 Deployment via GUI

The components needed to finalize the deployment process are already integrated. However, to enhance the
user experience, application owners should be able to deploy their applications through a simpler interface than
the command line. To achieve this, the deployment workflow needs to be integrated into the AC3 web portal.

4.5.2 Integration of Predictive Models with Al-based LCM

As previously mentioned, this UC demonstrates the microservice migration algorithm. To support this, the Al
models that trigger the migration process must be integrated with the LCM and other decision-making
components responsible for selecting the new microservice location.

© AC3 2023 Page |58

D.5.2. Report on Integration the CECCM

AC

4.5.3 Final Use Case Test

The UC has already been validated in a multi-cluster environment using both local and 5G networks. However,
to test in a more realistic scenario, we still need to mount the object detection model on a drone.

4.6 UC2 Integration Summary
Table 4: UC2 Integration summary

Architecture component

Sub-Component

Description

Integration status

Application gateway

Allow the application developer to

and centralised cloud for low
latency or bandwidth
optimization.

(GUI) define its application components (Complete
and SLA.

OSR Allow the generation of the AppD (Complete
Will manage the micro-services
that cannot run at the far edge

LMS Edge (due to low computing resources) Complete

LMS Far Edge

Will manage the micro-services
that will run on the far edge device
(i.e., UAV). Video capture and
object detection microservices.

Complete

LMS Cloud

Will manage and run the front-end
micro-service.

Complete

LMS Networking

Will interconnect the clusters (K3s,
K8s and ION Cloud).

Complete

Monitoring

Monitoring the micro-services KPI

Complete

Al-based LCM and

1. Manage the micro-services Life
Cycle
2. Migration algorithm that adapts

1. In progress

Decision L
if the far-edge resource degrades [2. In progress
Enforcement .
or moves to the far-edge a micro-
service
Zero-touch
Application and resource [configuration and . L
PP .g . Predict and describe infrastructure
management application .
resources and implement
management . In Progress
) , automated corrective measures.
(predict drones
availability)
Al-Based . . .
. .. |Predicting Application Behaviour |[In Progress
application profile
Al-Based resource |Describe the resources of the
. . In Progress
profile infrastructure
© AC32023 Page | 59

D.5.2. Report on Integration the CECCM AC® KQT

5 UG
5.1 Use Case Description

UC3 focuses on advancing our understanding of galaxy evolution across cosmic time through the processing and
analysis of large-scale 3D astronomical data cubes generated via Integral Field Spectroscopy (IFS). These data
cubes are sourced from advanced instruments, including MEGARA at the 10.4 m Gran Telescopio de Canarias,
MUSE at the Very Large Telescope, and MaNGA at the 2.5 m Sloan Telescope. Combining spatial and spectral
information, the data cubes provide critical insights into stellar kinematics, population characteristics such as age
and metallicity, and the underlying processes driving galaxy formation. A representative example involves the
analysis of the nearby galaxy UGC 10205, where MEGARA data cubes are processed to map continuum emission
and fit spectra using Full-Spectrum Fitting techniques. UC3 addresses significant computational challenges,
including the management of vast data volumes, orchestration of complex data pipelines, and assurance of
robust system availability. These issues often exceed the capabilities of traditional standalone systems,
necessitating a more scalable and distributed approach.

5.1.1 Use Case Objectives

UC3 aims to leverage the AC3 framework to establish a scalable and distributed infrastructure for processing
large-scale astronomical data, while enhancing resource efficiency and supporting cutting-edge research into
galaxy evolution. The specific objectives are as follows:

e Achieve a minimum 50% reduction in processing time for 5GB data cubes compared to standalone nodes
by integrating cloud and edge resources, ensuring efficient handling of hundreds of terabytes of
astronomical data.

e Ensure 100% system reliability to support uninterrupted research, mitigating the risk of downtime during
data processing and analysis workflows.

e Utilize containerized microservices with spectral analysis tools, including pPXF, STECKMAP, and
STARLIGHT, to extract key parameters such as stellar velocity, metallicity, and higher-order kinematic
moments like skewness and kurtosis, advancing insights into galaxy evolution.

e Deploy the UC3 testbed via the CECCM framework across OpenShift clusters with cross-cluster
networking via the AC® network operator, enabling dynamic task distribution, zero-touch deployment,
and Al-driven resource optimization.

e Enhance resource management through parallel processing and container orchestration, minimizing
memory and CPU consumption while maintaining scalability.

e Establish a benchmark for large-scale astronomical analysis, led by UCM and RHT, to empower the
scientific community in accelerating discoveries and fully harnessing the capabilities of modern
telescopes.

5.1.2 UC3 Stakeholders
5.1.2.1 Users/Astronomers

The primary beneficiaries and users of the deployed UC3 application are the astronomers. They will experience
an improved and simplified workflow as the application allows them to more efficiently process astronomical
data of varying instruments, and to effectively gather and analyse results from the various processing
applications. By providing a cohesive environment for managing data acquired from a variety of astronomical
instruments, the system directly supports their research objectives and accelerates their analytical processes.

© AC3 2023 Page | 60

D.5.2. Report on Integration the CECCM AC® Q

5.1.2.2 Application Developers / DevOps

Application developers are responsible for building the UC3 application. This involves providing the necessary
wrapping for the three specialised astronomy processing applications (Starlight, PPXF, and Steckmap). Their work
focuses on developing the UC3 application to handle the efficient ingestion of astronomical data and the
structured management of the processed outputs from these astronomy applications.

The DevOps team would deploy the application and would also stand to gain significant advantages through
reduced operational workload. The integrated LCM system, which provides zero-touch management, automates
many of the routine and complex tasks associated with deploying, scaling, and maintaining the application. The
result is a substantial reduction in operational burden, allowing the DevOps team to allocate their expertise to
more strategic initiatives rather than day-to-day management.

5.1.2.3 Infrastructure Provider

The Infrastructure Provider will be responsible for integrating and offering the CECCM. This involves the technical
work of assembling and deploying the various components that constitute the CECCM, such as Maestro, the OSR,
the Network Operator, and data connectors. They ensure the CECCM is operational and available to the
Application Developers / DevOps team for deploying and managing their applications across the federated cloud-
edge environment.

5.2 Use Case Architecture

To realise the vision of UC3, we have designed both an application and a testbed that enables scalable,
distributed processing of large-scale astronomical datasets while leveraging the AC3 framework’s advanced
orchestration and resource management capabilities. The architecture is tailored to address the computational
challenges of handling vast datasets from IFS instruments such as MEGARA, MUSE, and MaNGA, ensuring
efficient data ingestion, processing, and analysis across a federated cloud-edge infrastructure. The application is
structured into two core components, the Orchestrator and the Processor, designed as an event-based system
to support scalability and loose coupling.

For instance, the AC3® Network Operator is implemented to establish and dynamically manage connectivity
between these K8s clusters, creating a cohesive virtual application network that allows services and workloads
to communicate seamlessly across physical infrastructure boundaries. Furthermore, Maestro, functioning as the
LCM platform, orchestrates the deployment of the application by interpreting the AppD generated by the OSR
and generating the necessary K8s resource descriptors. Maestro also adapts the application's execution through
capabilities such as vertical resource autoscaling, horizontal pod autoscaling, or migration, based on insights from
Al model recommendations. This comprehensive architecture not only handles the processing of vast astronomy
datasets but also enhances system reliability and reduces processing times through distributed computing and
Al-driven lifecycle management.

5.2.1 Use Case Application

Professional telescopes, equipped with large mirrors, are designed to collect massive amounts of light from
various celestial sources. These mirrors are responsible for redirecting and focusing the incoming light towards
the detectors, which can count the number of photons falling on each part of the detector. Through a digital-to-
analogue conversion (DAC) system, these analogue signals are converted into digital signals, which facilitates
data manipulation. Among the digital data produced by the telescopes are data cubes, which are used in our UC.

© AC3 2023 Page | 61

D.5.2. Report on Integration the CECCM

AC:

Core to the UC application are the pre-existing astronomy analysis applications (Starlight, PPXf, Steckmap) that
are used today by the astronomers at UCM. These applications are heterogeneous, with a mix of off-the-shelf
and custom-built software, built on differing computing architectures with varying underlying requirements for
execution. To make these applications operate in a scalable way and to be managed by the AC3 architecture, the
applications have been containerized and made deployable on K8s.

The application is split into 2 core parts, the Orchestrator and the Processor. The Orchestrator is responsible for
ingesting the observation data batch and splitting it into smaller chunks for parallel analysis by the Processors.
The Processor then utilises the appropriate analysis software to execute the data analysis and returns the results
to the Orchestrator for correlation. We have designed the application as an event-based system to support
scalability and loose coupling of the components. This allows us to scale the number of Processors in a simple
way, and to also distribute Processors across a federated infrastructure.

oo

UCM (Madrid)

/

==>| Observation
Data Stroage

~ Event Generator

Orchestrator

Result Proccesor

)

Result
Queue

Event Bus

Data
Queue

Processor

Results Watcher

Receiver

‘

v

H«

Starlight

PPXf

Steckmap

L

J

—_

Figure 30. UC3 Application Architecture Orchestrator

Local Results Data Storage

As illustrated by Figure 30, the orchestrator contains 2 core components, the Event Generator and the Results
Processor. The Event Generator monitors the local data storage location waiting for input data and configuration

© AC3 2023

Page | 62

D.5.2. Report on Integration the CECCM AC® Q

files, detailing the data batch type as well as some analysis processing parameters. The data is then split into sub-
batches of a fixed size (based on configuration options). The data and config files are then wrapped in an event
and dispatched to the processing queue in the messaging bus.

In this UC, we have selected RabbitMQ as the messaging broker, using the AMQP messaging protocol. Here we
have defined 2 queues, one for data processing payloads and the other for results coordination.

5.2.1.1 Processor

The processor is the heart of the UC3 application and contains several critical components. First and foremost
are the Data Analysis applications themselves. Starlight, pPXF and Steckmap. These applications are effectively
off-the-shelf components, which introduce the challenges of varying architectures, features, and execution
models. For instance, Starlight is a binary executable built in Fortran, which executes a single batch per execution
of the application. In this situation, we need to build adaptation logic to enable us to trigger the application
execution remotely, in a repeatable and scalable way. We currently have full support for Starlight execution,
while pPXF support is currently in development with Steckmap to follow shortly.

The Receiver component is responsible for listening for events, unpacking the payloads and routing the data
batch to the appropriate processor application. Routing is based on the event type, where configuration and
observation data are delivered to the appropriate data staging location and the application execution is
triggered. The receiver also ensures that the Processor does not attempt to process multiple batches of different
types concurrently, to mitigate performance issues and ensure the predictability of the processing time. Once
processing has completed, the receiver is notified and is free to begin processing the next batch.

The Watcher monitors the output data, packages this into result events, and dispatches them to the appropriate
gueue for the Orchestrator to correlate.

5.2.2 UC3 Testbed - Hardware and Software

The UC Testbed, illustrated in Figure 31, is composed of applications and components distributed across multiple
K8s clusters, deployed in different data centres and cloud environments. This architecture facilitates multi-site
deployments, resource scaling, and advanced monitoring capabilities across platforms.

The testbed consists of three core environments: the Astronomy Lab, the LCM Cluster, and the UC Application
Clusters. Within the Astronomy Lab we include the telescopes themselves, which are the source of the data
observations. These instruments capture light from distant astronomical objects and channel it through precision
optics to photon-sensitive detectors. The resulting signals, initially analogue, are digitised via DAC systems to
enable further computational processing. A key output of this process is the generation of data cubes, which are
central to our UC. Also, within the Astronomy Lab is a K8s-based environment running Python scripts for data
manipulation and processing.

The LCM Cluster hosts the Maestro orchestration system, with the presence of a K8s cluster currently under
verification. The UC Application Clusters feature a dual-cluster deployment supporting multi-cluster operations
for application scalability.

In the Application clusters, the primary environment is an OpenShift-based deployment platform where
applications are initially provisioned and tested. A secondary OpenShift cluster complements it, enabling multi-
cluster deployment scenarios to improve resilience and scalability. These clusters work together to simulate real-
world distributed systems, enabling dynamic microservice orchestration and lifecycle management.

© AC3 2023 Page | 63

D.5.2. Report on Integration the CECCM AC® Q

5.2.2.1 Infrastructure Details

Compute Resources per Application Cluster:

e CPU: 24 vCores
e Memory: 64 GB RAM
e Storage: 200 GB SSD

Monitoring and Management Tools:

e Prometheus Operator for metrics collection and observability

e UC3 Application deployed across OpenShift clusters

e Maestro as a core orchestrator

e Advanced Cluster Management (ACM) Operator for centralized governance
e Multi-Cluster Scheduler for efficient workload placement

e Network Operator for network automation and policy enforcement

Multi-Cluster Control Plane

The multi-cluster control plane is built on a single-node OpenShift cluster that acts as the management hub. This
control plane serves as the central, unified layer responsible for orchestrating, governing, and monitoring all
resources and applications across the distributed testbed environments. It integrates key operators to oversee
and coordinate critical functions, including application scheduling, comprehensive observability, and intricate
network configuration across multi-site deployments.

By leveraging OpenShift, Prometheus, and advanced orchestration tools, this architecture supports scalable,
observable, and resilient deployments tailored to microservice-based applications in a distributed, multi-cluster
environment.

© AC3 2023 Page | 64

D.5.2. Report on Integration the CECCM AC? (Q‘i

Astronomy Lab (UCM) Athens (Ubitech) Arsys Cloud

G LeM Cluster (Maestro)

Piveau

Tonos Cloud

Tonos Data Storage Monitoring Cluster E=R
Ionos Cloud
e’
Management Cluster (4CM) J
Processing Cluster 1 (Openshift) O Processing Cluster 2 (Openshift! O
g[atstmm.., Data mchestmtorj [T ———]

[Astronomy Processing App]

w L =]

Figure 31. UC3 Infrastructure /| AC3 Component Integration

5.3 Component Integration Design

As shown in Figure 32, there are several key AC® components that we integrate with the UC3 application in order
to demonstrate the collective benefit of the AC? architecture. In terms of Data Management, the application
leverages the EDC Data Connector to manage the seamless transfer of large volumes of galaxy observation data
from the astronomer's lab environment to the processing application. The data source is also registered and
described in the Piveau catalogue for discovery.

The relevant application and resource usage metrics are exposed to the monitoring framework via the
Prometheus collector deployed in each application cluster. These metrics are for training the ML models as part
of the application and resource profiling, as well as for inference to trigger intelligent Lifecycle Management
actions.

In the role of LCM, we have used the Maestro orchestrator from UBITECH. Maestro is responsible for the
deployment of the application as well as enforcing application runtime decisions based on the Al model
recommendations. Specifically, Maestro interprets the AppD generated by the OSR for our data processing
application and generates the K8s-based LMS resource descriptors required for deployment on the K8s LMS.
Maestro will also adapt the execution of the application (e.g., executing vertical resource autoscaling, horizontal
pod autoscaling, or migration) based on the output of the resource/application ML models.

© AC32023 Page | 65

D.5.2. Report on Integration the CECCM AC? =

The Compute LMS utilised in this UC is K8s. Specifically, we employ a mix of OpenShift and K8s for individual
compute clusters as well as an additional multi-cluster control plane in the form of ACM and a multi-cluster
scheduler. Maestro will generate the multi-cluster scheduler manifests that allow the scheduling and
deployment of the application across multiple clusters.

Finally, to ensure that any potential deployment or scaling of the application across multiple clusters maintains
connectivity between components, we leverage the Network Programmability operator developed in WP4. The
operator can be instructed to create new Layer 7 tunnels between applications deployed on different clusters

| Northbound API \

[~ Piveau I ‘

i OSR

i

: P Monitoring

: App

Data Source (UCM) ! Descriptor

~ 1

i Al Application Profile

! Al-Based LCM

i } (Maestro)

' Al Resource Profile

1

:

1

1

1

'

1

1

1

1

1

1

1

|

Compute LMS (OpenShift + ACM)

Data Bucket

v

Astronomy Data —»|EDC Connector
(3D Fits File)

‘ Scheduler |

Placement API | ‘ Work |

|
[W

Network LMS |

Cluster 1 (OpenShift) Cluster 2 (OpenShift)
| Kubernetes API | Kubernetes API
Node Node Node Node
Processor Processor Processor
\ EDC Connector Starlight Starlight Starlight
ppxf ppxf ppxf
Orchestrator
STECKMAP STECKMAP STECKMAP
L J] J
Prometheus | [Prometheus
| |
L) J
lonos Cloud

Figure 32. UC3 /| AC Component Integration — How UC3 leverages the components developed in AC3

The UC3 Application Onboarding diagram (see Figure 33) outlines the process for deploying applications within
the system. It begins with the user specifying the application details in a JSON format via the GUI, part of the
Application Gateway. The GUI forwards service details to the Service Catalogue, which can also be leveraged by
the user to select pre-existing services to use in their application. The GUI also sends the application details to

© AC32023 Page | 66

D.5.2. Report on Integration the CECCM AC® Q

the App Gateway, which forwards them to the OSR to be translated into a machine-readable format called the
Resource Description Framework (RDF) which is used to represent and exchange graph data. The application
details are then sent to the application gateway and consolidated into the final AppD. The AppD is then included
in the service catalogue and sent to the LCM, which coordinates the deployment of the application on the
testbeds.

Service AC3 Testbed |
2, User App Gateway | Catalogue \ g osR ’ ‘ LCM ’) LM

— Describe application via JSON =

Request services ——>

«—— Send service details

Send App details ——— 0 —0798

Translate app
description into
machine
readable format
(RDF)
%J

&—————— Send app details in RDF format

Consolidate
RDF format
app details into
application
descriptor
—

— Include application description =

Send App Descriptor

Deploy application —

Service AC3 Testbed |
E App saremey Q Catalogue [@ oF ’ ‘ - ’ Q e

Figure 33. UC3 Application Onboarding Pipeline

The UC3 Processing Workflow diagram (see Figure 34) illustrates the data processing pipeline for UC3. Astronomy
data from the source is first saved to the UCM lonos Simple Storage Service (S3) storage bucket. The UCM
Provider Connector transfers this data to the Red Hat Consumer Connector, which stores it in the Red Hat S3
storage bucket. The UC3 Orchestrator watches for new data and retrieves results as needed, coordinating with
RabbitMQ to send batch data to the UC3 Processors for computation. Processed results are then stored back in
Red Hat S3 and transferred to UCM lonos S3 for final storage. This sequence ensures efficient data handling and
processing, leveraging the work/event dispatching model central to our architecture.

© AC3 2023 Page | 67

D.5.2. Report on Integration the CECCM AC® KQT

Astronomers | Astronomers App Dev | App Dev |
S| (mwma| e TR o] (mmar] |e 38 0 ren || & e
—— Sava Astronamy Data —
Transfer data ———>
Transfer data —3
Store data —————
Watch for data
Watch for results
Data Processing

Bateh data ——

proces @

Send data ——>

Process data.

«—— Storaresults

d results

&« Transfer results

e Transler results

«—— Store results
Astronomers | Astranamers App Dev | App Dev |
— Astronomers App Dev EDC ! uca
=1
Astronamy <4 Bucket t Epc 8 Conmector f v £ RabbitMa T procassors ucs
Data Source Connector [o] Processors

Figure 34. UC3 Data Processing Pipeline

App Dev §3
= R o

The UC3 Monitoring diagram (see Figure 35) details the runtime monitoring and resource management
mechanisms in place. The UC3 Orchestrator, RabbitMQ, and processors are the core components responsible for
preparing and processing the data. As such, this process must be monitored to ensure KPIs are met and resource
utilisation is efficient. Prometheus monitors queue length to gauge workload demands, while the UC3 Processors
are monitored for CPU and RAM usage. These metrics are collected and fed into the Monitoring Framework,
which informs the App and Resource Profiles. The LCM leverages this data to make informed decisions, triggering
scaling or migration actions to maintain system performance and resource efficiency. This monitoring process
ensures that the system can dynamically adapt to varying operational conditions, supporting the overall stability
of the UC.

© AC3 2023 Page | 68

D.5.2. Report on Integration the CECCM AC? ig‘i

UC3 Monitoring

[App and
ucs ucs Monitoring
&% Orchestator {D RabbitMQ B} Processors A Prometheus I Framework R:rsr:?;\j;:e tom

Data Processing
Batch data ——>

proces @

Senddata —>

Process data

«———— Sendresults

Monitoring
«—— Monitor queue length

Honito @

&—— Monitor CPU / RAM ——

Feed metrics ——

Feed mefrics ——>

Inform decisions —s

Trigger scaling
/' migration

—

Scale / Migrate

’ - App and
ucs . ucs Monitoring
ﬁ Orchestrator D RabbitMQ ﬁ’} Processors J\J' Prometheus Q Framework R;rscc;;';cse tem

Figure 35. UC3 Monitoring Sequence Diagram

5.4 Component Integration Status
5.4.1 Application Interface

The UC3 application GUI shown in Figure 36 provides users with a structured view of the astronomy data batches
stored in the S3 buckets, facilitating the management and monitoring of the batch processing workflow executed
by the UC. The bucket directory structure is as follows:

e Top-Level Directory (/batch_name_date): Displayed in the application Ul as a collapsible folder, labelled
with the batch identifier and date (e.g., batch_001_2025-04-01). This folder groups all data related to a
specific batch, allowing users to expand it and view its contents.

e Status file (/batch_name_date/status): The status file details the list of files, the batch’s state (waiting,
currently processing, finished), along with the start time, completion time, and duration.

e Config Subdirectory (/batch_name_date/config/): The config subdirectory contains a configuration file
which provides parameters used by the processing applications to correctly process each batch, these
can be viewed or downloaded by users to verify the batch parameters.

e Input Data Subdirectory (/batch_name_date/input_data/): The input data subdirectory lists the
astronomy data files to be processed. Users can view these files in the Ul or download them to inspect
the raw data before processing begins.

© AC32023 Page | 69

D.5.2. Report on Integration the CECCM AC® KQT

e Results Data Subdirectory (/batch_name_date/results_data/): The results subdirectory contains the
processed data generated by the astronomy processing applications such as Starlight or PPXF.

> IONOS Object Storage (Buckets) > & uc3-consumer

‘" @ batch_name_date

Upload objects Search by Prefix Q ‘

D NAME SIZE LAST MODIFIED C
O &5 config _ _
O © input_data/ _ _
O & results_data - -
O o stetus - -

Figure 36. S3 Bucket File Structure

5.4.2 Data Management and Connectors
5.4.2.1 Piveau catalogue

The Piveau Catalogue, comprising both its data and service components, supports the management and
accessibility of astronomy datasets for the processing applications. The data catalogue is designed to store key
metadata for these datasets, including attributes such as dataset name, description, ownership details, and
applicable usage licenses, alongside unique asset IDs. As part of the ongoing development, a sample astronomy
dataset has been successfully integrated into the data catalogue. However, connector endpoints, which are
essential for enabling data transfer, are not yet included within the data catalogue, and the corresponding
connector has not been integrated into the service catalogue. At this stage, the system is not yet operational for
users. Once fully implemented, the catalogue will allow users to negotiate access agreements directly with data
providers, utilising their own consumer-side data connectors to secure permissions for downloading and using
datasets in accordance with the specified policies and contract.

To realise this functionality, subsequent development phases will prioritise the integration of connectors into
the service catalogue. This process will involve embedding critical technical metadata, including required
environment variables, exposed ports, connector names, descriptions, minimum computing resource
requirements, and references to container images. Upon completion, this integration will empower application
developers to select, configure, and deploy the appropriate connectors necessary for seamless data transfer to
or from their applications. These enhancements will ensure robust interoperability between the Piveau
Catalogue and UC3 applications, supporting the broader objective of establishing a scalable, efficient, and user-
centric data management framework within the research ecosystem. The system remains under active
development and is not yet deployed for end-user utilisation.

© AC3 2023 Page | 70

D.5.2. Report on Integration the CECCM AC? (Q‘i

5.4.2.2 Data type and examples (.fits)

The data used in this UC is produced by IFS instruments, which generate astronomical data in the form of three-
dimensional data cubes. These cubes combine spatial and spectral information, capturing information from
contiguous regions of the sky. Each data cube consists of two spatial dimensions, representing the x and y
coordinates on the sky, and one spectral dimension, representing the wavelength. This format allows
astronomers to analyse the spatial distribution of various spectral features across an observed field, providing
detailed insights into the physical and chemical properties of celestial objects. By examining the light from
different regions within the data cube, researchers can study the composition, kinematics, and evolution of
galaxies, stars, and other astronomical phenomena with high precision. Specifically, we will focus on observations
of galaxies.

These data cubes are stored in the Flexible Image Transport System (FITS) format, the standard data format used
in astronomy. FITS files are designed to store, transmit, and manipulate scientific data, particularly images and
spectra. Each FITS file consists of a primary header and data unit (HDU), which contains metadata describing the
data, followed by one or more extensions that store the actual data. This format supports multi-dimensional
data arrays, making it ideal for storing the complex three-dimensional data cubes produced by integral field
spectroscopy. FITS files are highly versatile and can include additional information such as calibration data,
observational parameters, and processing history, ensuring that all necessary context is preserved for accurate
data analysis. By using the FITS format, we ensure compatibility with a wide range of astronomical software and
facilitate efficient data sharing and collaboration within the research community.

Our UC leverages data from three different IFS instruments: MEGARA [7], MaNGA [8], and MUSE [9].

e MEGARA: MEGARA is an optical Integral-Field Unit and Multi-Object Spectrograph designed for the Gran
Telescopio Canarias. It provides high-resolution spectroscopy data, which is crucial for detailed studies
of stellar populations and kinematics within galaxies. The data cubes from MEGARA typically have
dimensions of 40 x 43 x 4300, resulting in 1720 spectra per cube. Each MEGARA data cube weights
approximately 62 MB, with the total volume of MEGARA data amounting to 7.1 GB

e MaNGA: Part of the Sloan Digital Sky Survey, MaNGA (Mapping Nearby Galaxies at APO) obtains spectra
across the entire face of target galaxies using custom-designed fiber bundles. MaNGA's goal is to
understand the life history of present-day galaxies by providing two-dimensional maps of various stellar
and ionized gas properties. The data cubes from MaNGA typically have dimensions of 74 x 74 x 6732,
yielding 5476 spectra per cube. However, these dimensions can vary for different galaxy observations,
and the sizes provided are indicative. The minimum and maximum sizes of the full data-cubes are 133
MB and 757 MB, respectively, with a total volume of approximately 4.23 TB.

e MUSE: The Multi Unit Spectroscopic Explorer (MUSE) is a panoramic integral-field spectrograph
operating at the Very Large Telescope (VLT) of the European Southern Observatory. MUSE combines a
wide field of view with improved spatial resolution provided by adaptive optics, making it a powerful
tool for discovering and studying faint and distant astronomical objects. The data cubes from MUSE
typically have dimensions of 319 x 320 x 3721, equating to 102080 spectra per cube. Similar to MaNGA,
the dimensions of MUSE data cubes can vary depending on the specific observations of different galaxies,
and the sizes mentioned are approximate. The minimum and maximum sizes of the full data-cubes are

© AC32023 Page | 71

D.5.2. Report on Integration the CECCM AC® =

2.3 GB and 28 GB in .gzip format, and 2.9 GB and 32.6 GB in FITS format, with a total volume of
approximately 3.2 TB for the files in .gzip format.

The data from these instruments vary in size and dimensions due to the different fields of view each instrument
covers. This variability reflects the diverse observational capabilities and scientific goals of each instrument,
highlighting the need to adapt existing astronomical software tools to be user-friendly for data from different
instruments and telescopes. Example .fits data files are shown in Figure 37 and Figure 38.

T [EUECEES A=A EE I) e < imloads | ASTRO_data | ASTRO_data | MEGARA datacubes : (g

of observation BUNIT = 'Jy ! { Unit of

pixel value DETECTOR= "CCD2231-84-8-E74' !

Detector Model EXPTIME = 728. J

[s] Exposure time DARKTIME= 720.841

[s] Exposure time READMODE= ' NORMAL / ¢ commands.sh

Read Mode RSPEED = 'SLOW /

Readout Speed GAIN1 = 1.78 7 IC1683_LR-V_final_cube fits 65.2 MB

[e- / ADU] Gain Top Channel GAINZ = 1.6 /

Gain Bottom Channel RDNOISE1= 3.4/) - B

RON Top Channel (e-) RDNOTSE2= 3.4/ NGC0023_LR-V_final_cube.fits 85.2 MB

RON Bottom Channel (e-) NUM_INDX= 1. 4

Image index in sequence NUM_IMAG= 5./ NGCO600_LR-R_final_cube.fits 65.1 MB

Number of images in sequence IPA = 196.146 /

Instrument position (degrees) AIRMASS = 1.2845248889715 /)) ~)

ATRMASS ATRMASS1= 1.2845240889715 [NGCO718_LR-R_final_cube.fits 65.1 MB

AIRMASS at begining of observation AIRMASS2= 1.2845248889715 /

AIRMASS at end of observation AMSTART = 1.26845248889715 / NGC1042_LR-R_final_cube.fits 65.1 MB

AIRMASS at begining of observation AMEND = 1.20845248889715 /

AIRMASS at end of observation RA = '81:22:39.158' !)) - .

Telescope right ascension (h:m:s) DEC = '34:26:11.615' NGC1087_LR-R_final_cube.fits P51 ME

Telescope declination (d:m:s) RADEG = 28.66315638344987 /

Telescope right ascension (degrees) DECDEG = 34.4365596465142 / NGC2500_LR-B_final_cube.fits 65.1 MB

Telescope declination (degrees) AZIMUTH = 71.3831431896873 /

Tel. azimuth at start time (deg) ELEVAT = 56.0845807146726 /) - B

Elevation at start of observation (deg) ROTANG = 1084.855811111111 / NGC2500_LR-V_final_cube.fits 5.1 M5

Rotator FCCS_F positien angle (deg) ASGRA = '81:22:48.138' /

ASG right ascension (h:m:s) ASGDEC = '34:30:09.615' / NGC2537_LR-V_final_cube.fits 65.1 MB

ASG declination (d:m:s) M2UX = 2.62783998936279 /

GTC secondary mirror UX position M2UyY = 3.78188991249084 /) ~ ~

GTC secondary mirror UY position MUZ = -2.03623008728027 / NGC2543_LR-R_final_cube fits o2 M

GTC secondary mirror UZ position M2RX = 0.88897221681754427 /

GTC secondary mirrer RX position M2RY = -0.888684812818609792 NGC2552_LR-B_final_cube.fits 65.1 MB
Figure 37. Example fits data Figure 38. MEGARA Data-cubes as fits file

batches

5.4.2.3 EDC S3 Extended Connectors Developed by lonos

To enable seamless data transfer between the UCM and the processing applications deployed on the UC3
infrastructure, UC3 leverages the EDC S3 Data Connector extensions developed by IONOS. These EDC connector
extensions facilitate bi-directional data exchange between S3 buckets, ensuring efficient and secure data flows.
They incorporate data governance through predefined policies and contracts, which must be negotiated prior to
initiating data transfers, thereby ensuring compliance and control over data usage.

The EDC S3 extensions are designed to comply with industry-standard protocols for secure cloud storage,
enhancing interoperability with diverse S3-compatible systems, and enabling integration with multiple project
testbeds or external infrastructures.

Within the UC3 workflow, these connectors serve as a vital link between data ingestion and processing. They
transfer astronomy data from the UCM S3 bucket to the RHT S3 bucket for batching by the Orchestrator, while
their bi-directional capability supports returning processed outputs to UCM.

© AC32023 Page | 72

D.5.2. Report on Integration the CECCM AC® KQT

S3 Buckets to Store Data

S3 buckets have been created on the lonos infrastructure by UCM and RHT to facilitate the storage, retrieval,
and transferring of data by the connectors. Each bucket must be configured to allow the other parties connector
read and write access by adding the lonos user ID as a grantee in the bucket's Access Control List (ACL). There
are several keys and endpoints provided by lonos which must be included in the connectors configuration file or
passed in as environment variables to ensure proper communication and access to the S3 bucket.

Deployment

The deployment of the EDC S3 Extended Connectors for UC3 is executed through a series of technical steps to
ensure seamless integration with the OpenShift clusters on IONOS and Arsys infrastructures. Both the UCM
provider and RHT consumer connectors are deployed as containerized applications, leveraging Docker images
and OpenShift’s K8s orchestration for scalability and reliability.

Each connector is deployed on an OpenShift cluster hosted on either the IONOS or Arsys testbeds. They use
custom built Docker images which are pulled from a quay.io repository and deployed using K8s deployment
manifests, while the connector’s configuration is mounted as ConfigMaps containing the respective
config.properties files, which include the IONOS S3 credentials:

edc.ionos.access.key=
edc.ionos.secret.key=

edc.ionos.token=
edc.ionos.endpoint.region=eu-central-2

These are injected as environment variables via the JAVA_TOOL_OPTIONS flag to ensure the connectors can
access the corresponding S3 buckets.

-Dedc.fs.config=/app/resources/config.properties

A Hashicorp Vault server is deployed on the OpenShift testbeds alongside the connectors to manage temporary
keys generated by the lonosS3Provisioner during the data transfer process and is deployed by both RHT and UCM
with the details of each deployment being used in the corresponding connectors configuration:

edc.vault.hashicorp.url=http://vault:8200
edc.vault.hashicorp.token=myroot
edc.vault.hashicorp.timeout.seconds=30

Workflow

The data transfer process begins with preparing the necessary JSON payloads to define the asset, policy, contract,
and transfer request. These payloads are used to interact with the RHT consumer connector management API,
which communicates with the UCM provider connector to facilitate the data transfer. The RHT consumer
connector exposes its management API, which is accessible for issuing curl commands. The UCM provider
connector responds to these requests to provide the data from the UCM bucket, and vice versa for the results
transfer.

First, an asset must be defined on the UCM provider side to represent the astronomy data in the uc3-provider
S3 bucket. A JSON payload, “asset.json”, is created to register this asset before being sent to the UCM provider’s
management API using a curl command:

© AC3 2023 Page | 73

)
D.5.2. Report on Integration the CECCM AC® I(;l

{
"@context": {"edc": "https://w3id.org/edc/v0.0.1/ns/"},
"@id": "asset-1",
"properties": {
"name": "astronomy-data",
"type": "IonosS3",
"bucketName" : "uc3-provider"
"keyName": "astronomy-data.txt"
}
}

curl -X POST "http://provider:8282/management/v3/assets"” \
-H "Content-Type: application/json" \
-H "X-API-Key: password" \

-d @asset.json

A policy must then be defined on the UCM provider side to govern access to the astronomy data. A JSON payload,
“policy.json”, is created to define a policy that permits usage of the asset:

{

"@context": {
"edc": "https://w3id.org/edc/v0.0.1/ns/",
"odrl": "http://www.w3.org/ns/odrl/2/"

}

"@id": "policy-1",
"policy": {
"@type": "odrl:Set",
"odrl:assigner": {
"@id": "provider"
b
"odrl:target": {
"@id": "asset-1"
b
"odrl:permission": []
"odrl:prohibition": [
"odrl:obligation": []

curl -X POST "http://provider:8282/management/v3/policydefinitions” \
-H "Content-Type: application/json" \

-H "X-API-Key: password" \

-d @policy.json

Next, a contract definition is created to govern the data transfer. A JSON payload, “contract.json”, is prepared to
define the contract terms, linking the asset to a policy that permits access:

{

"@context": {

© AC32023 Page | 74

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/management/v3/assets
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://provider:8282/management/v3/policydefinitions

)
D.5.2. Report on Integration the CECCM AC® I(;l

edc": "https://w3id.org/edc/v0.06.1/ns/"

}

id": "contract-1",
"accessPolicyId": "policy-1"
“contractPolicyId": "policy-1"

curl -X POST "http://provider:8282/management/v3/contractdefinitions"” \
-H "Content-Type: application/json" \

-H "X-API-Key: password" \

-d @contract.json

The RHT consumer then initiates a contract negotiation with the UCM provider. A JSON payload, is created and
used via curl to request access to the asset:

{
"@context": {
"@vocab": "https://w3id.org/edc/v0.0.1/ns/"
"odrl": "http://www.w3.org/ns/odrl/2/"
}

type": "NegotiationInitiateRequestDto",
"counterPartyAddress": "http://provider:8282/protocol”,
"protocol": "dataspace-protocol-http",
"offer": {
"offerId":
"Y29udHJhY3QtMQ==:YXNzZXQtMQ==:M2N1ZTQ20TYtNzc2Yi0@0Y2EBLWJIMWItM2NhMWNU30Tg5NDAZ "
}

olicy": {

"@id" :
"Y29udHJhY3QtMQ==:YXNzZXQtMQ==:M2N1ZTQ20TYtNzc2Yi@OY2EOLWJIMWItM2NhMWU30Tg5NDAZ"
"@type": "odrl:Offer"

"odrl:assigner": {"@id": "provider"},
"odrl:target": {"@id": "asset-1"},
"odrl:permission": [],
"odrl:prohibition": [],
"odrl:obligation": []

curl -X POST "http://consumer:9192/management/v3/contractnegotiations” \
-H "Content-Type: application/json" \

-H "X-API-Key: password" \

-d @negotiation.json

Once the negotiation is finalized (status FINALIZED), the response provides a contract agreement ID which is used
to initiate the data transfer. A JSON payload, “transfer.json”, is prepared to define the transfer request. The
transfer is initiated by sending this payload to the RHT consumer’s management API:

K |

© AC32023 Page | 75

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/management/v3/contractdefinitions
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://provider:8282/protocol
http://consumer:9192/management/v3/contractnegotiations

D.5.2. Report on Integration the CECCM AC? (Qﬂ

"@context": {
"edc": "https://w3id.org/edc/v0.8.1/ns/"

b
"@type": "TransferRequestDto",

“connectorId": "provider",

"counterPartyAddress": "http://provider:8282/protocol”,
"protocol"”: "dataspace-protocol-http",

"contractId": "76aaB24a-ab24-4d22-bce9-ald12e8a6e2f",
"assetId": "asset-1",

"transferType": "IonosS3-PUSH",

"dataDestination": {

"type": "IonosS3",

"storage": "s3.eu-central-2.ionoscloud.com",
"bucketName": "uc3-consumer"”
"keyName": "asset-1.txt"

curl -X POST "http://consumer:9192/management/v3/transferprocesses"” \
-H "Content-Type: application/json" \
-H "X-API-Key: password" \

-d @transfer.json

The transfer process transitions through states (INITIAL, PROVISIONING, STARTED, COMPLETED), with the
lonosS3Provisioner generating temporary keys (managed by Vault) to facilitate the S3 transfer. Upon completion,
the astronomy data is available in the uc3-consumer bucket for processing by the RHT Orchestrator.

This workflow ensures that data transfers are executed securely and in compliance with the predefined policies,
leveraging the EDC S3 Extended Connectors’ capabilities within the UC3 environment.

5.4.3 OSR and Application Descriptor

The process of application onboarding begins with the developer interacting through the GUI, where they define
the application’s components, such as microservices, data sources, and policies, by leveraging blueprints from
the Service Catalogue and Data Catalogue. The OSR enhances this abstraction by interpreting these inputs using
ontologies and reasoning techniques (e.g., deduction, induction), and translating them into a machine-readable
format like RDF or OWL that captures semantic relationships and dependencies. The Application Gateway then
consolidates this into a structured AppD (see Annex I: OSR Application Descriptors for the full AppD), which the
Al-based LCM system uses to map to specific technologies, such as K8s manifests or Docker containers.

In our specific UC, however, we are not currently utilising the Application Gateway or the full capabilities of the
OSR as described, as these components have not yet been made available for use within the AC3 environment.
Instead, the AppD has been manually crafted through close collaboration with the developers of the OSR. This
manual process involved defining the application’s components such as microservices, dependencies, and
resource requirements directly with the OSR team, bypassing the automated abstraction layer typically provided
by the GUI of the Application Gateway. While this approach has allowed us to align the descriptor with our needs

© AC32023 Page | 76

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/protocol
http://consumer:9192/management/v3/transferprocesses

D.5.2. Report on Integration the CECCM AC? ig‘i

and the OSR’s semantic reasoning capabilities, it underscores the reliance on future integration of these
components to enable a more automated workflow which will be completed by the final version of UC3.

The AppD will be generated by the OSR through parameters provided by the application developers and is
instrumental in facilitating the automated deployment and lifecycle management of microservices within the
UC3 testbed. It delivers a structured specification of application components, ensuring reproducibility, scalability,
and interoperability across the federated cloud-edge environment. This descriptor is processed by the LCM and
converted within the adaptation and federation layer into K8s manifests, enabling the deployment of
microservices onto the testbed clusters.

The UC3 AppD specifies each microservice essential to the UC application, alongside the resource configurations
necessary for their operation on a cluster. The resources required for this UC include:

e Persistent Volumes
e Service Accounts
e Role bindings

Volumes_configuration:
- VolumeName: "uc3-pv-volume"

VolumeType: "PersistentVolume"

Security_configuration:
- ServiceAccountName: "starlight-sa”
ApiVersion: "v1"

Kind: "ServiceAccount"

The microservices outlined in the UC3 AppD are categorized by a cluster affinity property into two deployment
groups, promoting scalability and enabling the migration of certain microservices without impacting others.
These microservice groups are:

Orchestrator:

e Data Connector - The EDC IONOS S3 Extended Consumer Data Connector ensures governance through
contract negotiations with the provider data connector and transfers data from the UCM S3 bucket to
the RHT S3 bucket.

e Orchestrator - Retrieves astronomy data from the RHT S3 bucket, batches it, and forwards it to the event
queue.

e RabbitMQ - The event queue that transmits astronomy data as events to the processor’s event receiver.

- MicroserviceName: "orchestrator"
Version: "1.0"
Image: "rayc/ucm-producer"
ID: "orchestrator"

ClusterAffinity: "orchestrator"

Processor:

© AC3 2023 Page | 77

D.5.2. Report on Integration the CECCM AC® KQT

e Event receiver - Subscribes to the event queue and directs the astronomy data to the appropriate
processing application.

e Starlight - An astronomy application that processes data to provide astronomers with valuable insights
into the properties of the universe.

- MicroserviceName: "starlight"
Version: "1.0"
Image: "rayc/ucm-processor"
ID: "starlight"

ClusterAffinity: "processor"

5.4.4 LCM

The application LCM functionalities are implemented with the use of MAESTRO service orchestration platform
by UBITECH. The implemented functionalities include a) the deployment of application containers according to
end-user-defined policies using the TMF-based standardised processes of the platform [[10],[11],[12],[13]], and
b) the runtime update of the deployed services based on information received from monitoring and the decisions
produced through the analytics modules. MAESTRO provides a modular framework with well-defined
standardised interfaces for easily adapting to different types of external modules related to: Management of
end-user application requests (i.e., OSR), monitoring, analytics, and decision engines (i.e., AC> monitoring and
App/Resource profile engines and migration engine). Moreover, for the purpose of AC3 integration needs,
MAESTRO southbound interface is extended to integrate with RedHat’s multi-cluster control plane (i.e., ACM)
and multi-cluster scheduler.

The details about the integration status of MAESTRO with respect to the two core functionalities are provided in
the following subsections.

5.4.4.1 Application Deployment

The Application Gateway and OSR provide a vital abstraction layer that allows the developer to define their
application in a way that is agnostic to the underlying technology, by ultimately generating an AppD (based on
AC3 descriptor model) that can drive the deployment of the application. In order to anchor this to the underlying
technological choice, it is essential to adopt a solution that can effectively translate the descriptor into the
corresponding technology-specific implementation To this end, we have implemented an [AC3? -OSR]-to-
[MAESTRO Exposure] layer translator, that creates the K8s Manifest Files required for composing the MAESTRO
service order according to TMF-641 [11]. As shown in the image below (Figure 39), the role of the application
translator is to read the AC® AppD file generated by the OSR according to the AC3 descriptor model and create
the full set of the K8s Manifest files that essentially include all the necessary information about the containerised
application components with their access permissions (service.yaml, role base(rb).yaml, service
account(sa).yaml, and persistent volume(pvc).yaml files) as well as their infrastructure deployment parameters
for the components (deployment.yaml files). Specifically, for UC3 and according to the UC3 AppD, there are in
total 12 Manifest files that are created, 5 of which are deployment.yaml files.

© AC3 2023 Page |78

D.5.2. Report on Integration the CECCM AC? lgi

fomrm e - AC3 App Descriptor i,

App Translator

#@ data-connector-deployment.yaml
® data-connector-service.yaml

@ eventreceiver-deployment.yami
@ orchestrator-deployment.yamil

® privileged-role-rb.yaml

® rabbitmqg-deployment.yaml

@ rabbitmg-service.yaml

@ starlight-deployment.yaml

@ starlight-sa-sa.yaml

@ starlight-service.yaml

laim-pvc.yaml

/olume-pv.yaml

Figure 39. Schematic representation of the OSR-to-MAESTRO Exposure translation process, in which the K8S Manifests files
are extracted by the AC3 App Descriptor for each micro-service.

It is noted that thanks to the clearly defined AppD model, the whole translation process can be automated, and
the MAESTRO Service Ordering process can be initiated directly once a valid AppD is received from the AC3-OSR.
In this case, the creation and submission of the AppD to the MAESTRO LCM has the direct meaning of a
deployment request and can be controlled by the Front-End GUI that provides the initial high-level end-user
requests.

The subsequent step involves ordering the service through RedHat's multi-cluster control plane, ACM. To
efficiently orchestrate application deployments, MAESTRO and ACM employ a sophisticated label-based routing
mechanism to accurately determine the appropriate target cluster, such as, for instance, an OpenShift cluster, a
standard K8s cluster, or a cluster with specialized resources like dedicated CPUs, among others. In essence, labels
can be used to define and identify any cluster characteristic and capability. This enables MAESTRO, in conjunction
with ACM, to intelligently distribute application deployments across the entire cluster continuum, based on the
specific requirements and characteristics of each microservice of the application. This determination is
performed by retrieving location-specific labels through metadata fields exposed by the MAESTRO TM Forum
(TMF) APIs. Once the appropriate cluster target is identified, MAESTRO proceeds to transform the standard K8s
resource definitions into specialized “CustomManifestWork” resources, fully compatible with RedHat’s ACM
Hub. These custom resources encapsulate the detailed deployment instructions required by the control plane to
effectively manage multi-cluster deployments. Deployment requests generated by this translation process are
subsequently dispatched to their designated clusters via RedHat's ACM Hub, ensuring a centralized and
streamlined deployment procedure.

© AC32023 Page |79

D.5.2. Report on Integration the CECCM

ACC

The overall workflow described above is depicted below in Figure 40. It begins with the end user, who provides
the AppD (left side of the diagram). The Application Translator then generates the corresponding K8s manifest
files and pushes them to the AC? registry. Following this, a CI/CD pipeline is triggered to activate the Request
Generator mechanism (optionally, it may also invoke the Package Generator mechanism). The Request
Generator builds the complete order according to the TMF service order standard and also enriches the metadata
field with labels to define the application needs (per service). These labels are subsequently used by ACM to
distribute the application deployment intelligently across the clusters, as explained previously. Finally, the
MAESTRO Service Engine is initiated in order to transform the K8s Manifest files to the proper resources, namely,
CustomManifestWork resources, and to dispatch the request to the ACM Hub. In the last stage of the process,
the ACM hub forwards the deployments to the edge site clusters. Figure 41 presents a UC3-specific example of
the label-based process for creating the CustomManifestWork.

H Service Dev. ;

Service
i Developer

& [H

ll Registry [

; @ git:

commi

t

Webhook :

o1

w
g Package H
Generator J

Optional

Request
Generator

00 e

! T metadata i

i 3uth create (opels) |

i
fcr co

I

l‘.’_\‘AE‘JT?O

et s

Service LCM

I
CustomManifestWork

Edge Sites

Figure 40. Process workflow for the deployment of an AC application request from the OSR translation point to the

A

rabbitmgq

starlight

interfacing with ACM

piibribibe <8s Manifest files juliulbuiiuttoibuiiebiniieitel Cluster Metadata julgel
. B . 1 -

Maestro Service

tmforum

%

Engine

Figure 41. Schematic representation of the CustomManifestWork creation from the Manifest files and the combination of
cluster metadata using a cluster labelling scheme.

© AC3 2023

Page | 80

D.5.2. Report on Integration the CECCM AC® Q

5.4.4.2 Application Adaptation

MAESTRO is capable of integrating monitoring systems into its process and orchestrating feedback loops,
enabling continuous LCM for each deployment. This ensures visibility, operational reliability, and efficient
resource management throughout the service lifecycle.

It is noted that at the time of editing this deliverable, the interconnections between the components of the
different AC3? layers, as well as the integration steps have been defined, as shown in Figure 42 but the integration
is not yet complete, since a) the MAESTRO platform runtime processes are currently updated to be able to handle
custom metrics in a modular and well defined method) while offering standardised connection interfaces to the
monitoring modules, and b) the AC? decision engines for the App and Resource profile in WP3 and WP4 require
to be finalised and adjusted to the platform requirements. The work is planned for the second phase of the
integration process, following the UC3 deployment phase.

Diving deeper into the LCM aspect of this specific UC, Figure 42 presents the control plane architecture, which
has been designed to manage the complete lifecycle of applications across the distributed edge computing
environment. Based on the three main layers of AC3, the process begins at the upper layer (namely Application
Composition and onboarding), where the end user includes in their request the SLA metrics as part of the
application specifications. The App translator then will a) create the proper HPA resources and b) dispatches both
the SLA metrics and the Horizontal Pod Autoscaler (HPA) resources to MAESTRO. Subsequently, MAESTRO
updates the External Metrics API and Custom Metrics APl of each cluster to enable the provisioning of custom
metrics for any HPA resource. To support this, MAESTRO is integrated with Prometheus, which is responsible for
collecting and retrieving custom metrics generated by the AC3 Al LCM algorithms and

For each new custom metric, MAESTRO dynamically creates a ConfigMap that defines how the metric should be
exposed to the K8s Custom Metrics or External Metrics APIs. As a result, HPA controllers within the clusters can
retrieve these metrics and act upon them, enabling continuous and efficient intra-cluster lifecycle management.
Last but not least, it is important to note that end users can continuously monitor the status of their applications
along with the associated metrics, and they are able to update the initial deployment request at any time, for
example, by modifying the metrics that drive autoscaling or adjusting the initial resource limit requests for each
service. This architecture effectively extends the default K8s autoscaling mechanism, which is traditionally
limited to CPU and memory, by introducing a dynamic, SLA-aware autoscaling strategy driven by external and
application-specific metrics.

© AC3 2023 Page | 81

|
D.5.2. Report on Integration the CECCM AC® l%

® _
AC3 App Descriptor
!)
Application App Translator Grafana
Compositionand | _ _ _ _ _ ___ __________®& _____|L_____
onboarding -
Ml Service Catalogue Maestro Ex
KPI Coll. & Exp. 2
Monitorin:
g Maestro Core
Application and | [= T T T T T T T e |
resource Decision
Management __Enforcement ACM Scheduler

1
1
a
1
1
1
1
Resource Broker :
1
1
1
1
1
1
1

1
1
1
1
. 2 O
1
1
1
1
I
| Resource Exposure
1 Compute Controller

Network : d
Infrastructure So ¥ 9 - i— ==
Edge Site 1 g g Edge Site

Fe===—===================—=
ions !
4@ Interfaces 3 LCM Interconnections |

1

Figure 42. The MAESTRO LCM architecture adapted to the AC3 architecture

Figure 43 illustrates in detail how the custom metric exposure process works and how the AC3 Al LCM mechanism
can inject its metrics into the system, enabling the creation of closed-loop adaptation systems, utilizing HPA
resources, for each deployment.

In detail:

1. The user initiates a request to deploy an application, specifying the custom metric that should guide the
LCM logic.

2. The MAESTRO creates a) the Prometheus adapter ConfigMaps and b) the HPA resources, that map each
deployment with each custom metric. These resources are then deployed to the relevant clusters by the ACM
scheduler. The Prometheus Adapter ConfigMap defines how the adapter will translate those metrics into K8s-
readable custom metrics. The key config values there are:

a. “SeriesQuery”: Specifies which metric series should the adapter query from in Prometheus

b. “metricsQuery”: Defines how to aggregate or process the data (avg, sum etc.)

c. “name”: Sets the name what will be exposed the custom metric via K8 Metrics or External API.
3. Prometheus collects those metrics from Al LCM mechanisms.
4. Prometheus Adapter queries Prometheus using the rules defined in the ConfigMap.

5. The Prometheus Adapter configures K8s Custom Metrics API (“/apis/custom.metrics.k8s.io”) or External
Metrics APl (“/apis/external.metrics.k8s.io”) to exposes the retrieved metrics.

6. Finally, HPA resources query the K8s metrics API to retrieve the custom metric values and make scaling
decisions based on the thresholds defined by the user during the initial application request.

© AC32023 Page | 82

|
D.5.2. Report on Integration the CECCM AC® lg‘

3.Collect e

AC Prometheus

seriesQuery . .
Prometheus S-BIE External Metrics API

Adapter ConfigMap /apis/external.metrics.k8s.io
metricQuery

6. Get metric value

2b. Deploy

Maestro ACM Scheduler &

external

Figure 43. Custom metric exposure process and metrics injection into the system

5.4.4.3 Al LCM algorithms

In terms of AI-LCM algorithms, at this stage the core focus has been on exploring the most appropriate Al
algorithms to integrate into this UC integration design. In particular, we are focusing on 2 core Al-enabled
approaches under development within the project:

The XAl-enabled auto-scaler ML model, in development in WP4, can predict application QoS violations and use
this to trigger corrective actions. Specifically, it monitors application CPU and RAM usage relative to application
limits and uses this to predict when we need to make interventions. An XAl model also indicates the contribution
of each feature to the prediction (E.g., CPU/RAM), enabling targeted mitigation of the issue. As part of this work,
the Decision Engine utilises vertical autoscaling to increase the CPU or RAM for the application in question.

We are also considering, given the nature of the Astronomy processing application architecture, whether CPU
and RAM provide accurate reflections of workload, given that we are using a work/event dispatching model.
Instead, we are exploring using additional metrics that consider the incoming workload, which may be a better
prediction of potential bottlenecks in the system. For instance, queue length and average batch processing times
should provide a more accurate reflection of the workload.

We are also considering using the same algorithm for predicting QoS violations in order to mitigate the predicted
performance issues via horizontal autoscaling. Using the predictions from the ML model, instead of vertically
autoscaling, we can look to increase the number of Processor Pods in the system, in order to increase concurrent
data processing. This work aims to utilise Maestro and the Horizontal Pod Autoscaling capability within K8s.
Where specific SLA metrics are required by an application, we can convert these to HPA resources to monitor
these SLA and automatically trigger scaling.

Building on this foundation, we are integrating Al-LCM algorithms into the batch processing workflow to further
enhance the scalability of the astronomy data processors. While CPU and RAM usage remain under monitoring,
the work/event dispatching model employed in our UC suggests these metrics may not fully reflect workload
demands. To address this, we are incorporating RabbitMQ queue length as a more robust indicator of system
load. Astronomy data batches are queued in RabbitMQ for processing by the RHT Orchestrator. The resulting
queue length, representing unprocessed batches, is collected and analysed. This data is fed into an XGBoost-
based ML model, which predicts potential performance degradation, such as elevated workload queues.

© AC32023 Page | 83

D.5.2. Report on Integration the CECCM AC® KQT

These predictions are then leveraged to inform scaling decisions through the K8 HPA. When the XGBoost model
anticipates an SLA violation due to excessive queue length, the HPA responds by increasing the number of
processor pods. For example, it might scale from 2 to 4 pods to distribute the workload and accelerate
processing. Conversely, should the queue length fall below a lower threshold, such as 10 batches, the HPA
reduces the pod count to optimise resource utilisation. This Al-driven mechanism ensures that the astronomy
data processors adapt dynamically to workload fluctuations, maintaining performance efficiency while adhering
to SLA commitments.

Finally, we also want to include multi-cluster replication/stateless migration in our UC execution. This would
enable Processor pods with constrained resources or excessive workloads to scale not just locally (within the
same cluster) but also cross-cluster, in order to exploit resource availability in other clusters. Since every
event/batch is discrete, the Processors operate statelessly, so the work in WP3 focused on stateful migration
may not be fully exploitable. However, we are examining whether their work on resource prediction, utilising a
LSTM-based machine learning algorithm could be leveraged to trigger stateless pod migration.

5.4.5 Monitoring
5.4.5.1 Monitoring Framework Integration

To get visibility across our distributed architecture, we require a monitoring solution that can provide real-time
insights, scale across our multi-cluster environment, and support long-term metric retention. This is where our
integration with the monitoring framework devised under WP4, based on Prometheus and Thanos, comes into

play.

In OpenShift, Prometheus is deployed and managed by default using the platform’s built-in Monitoring Operator.
This operator handles both the deployment and ongoing lifecycle of Prometheus, ensuring that it continuously
scrapes metrics from cluster components as well as application-level metrics exposed by workloads running
within the cluster. In a federated cluster environment, Prometheus instances are tailored to focus on local metric
collection. These metrics are then forwarded to a central aggregation point using the remote_write feature,
which allows for efficient grouping and transfer of data.

To enable centralized observability and long-term retention, Prometheus is integrated with Thanos. Each
Prometheus instance is configured with remote_write to push metrics to the Thanos Receiver. This setup allows
Thanos to act as a centralized storage and query layer, sending metrics from all participating sites. As a result,
users gain a unified view of metrics across the entire multi-site deployment, with access to historical data and
advanced querying capabilities through tools like Thanos Querier or Grafana. This architecture not only improves
monitoring consistency across sites but also ensures that valuable metrics are retained and made accessible
beyond the lifespan of any individual Prometheus pod or cluster.

kind: ConfigMap

apiVersion: vi1

metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
uid: 186780e5-bf5d-4bed-bde5-621a5635bd71
resourceVersion: '524193793'

© AC3 2023 Page | 84

D.5.2. Report on Integration the CECCM AC? lgi

creationTimestamp: '2024-03-08T10:40:32Z'
managedFields:
- manager: hypershift-operator-manager
operation: Update
apiVersion: vi
time: '2025-03-03T12:18:46Z'
fieldsType: FieldsV1
fieldsV1:
‘f:data':
A
"f:config.yaml': {}
data:
config.yaml: |
prometheus:
remoteWrite:
- url: http://82.223.13.241:10908/api/v1/receive
authorization:
credentials:
key: token
name: telemetry-remote-write
type: Bearer
queueConfig:
batchSendDeadline: 1m
capacity: 30000
maxBackoff: 256s
maxSamplesPerSend: 10000
minBackoff: 1s
url: https://infogw.api.openshift.com/metrics/vl/receive

writeRelabelConfigs:

Figure 44. Visual representation of Our monitoring Config with our Thanos URL inserted

OpenShift inherently provides automatic service discovery for Prometheus, which detects and scrapes metrics
from applications and network components, including Skupper. Prometheus collects metrics from K8s services
and pods that are managed by OpenShift, making it easy to monitor the infrastructure and deployed applications.

Prometheus is currently running within OpenShift and actively monitoring metrics for both the cluster and
applications. The Thanos Receiver is properly configured and is successfully aggregating metrics from multiple
clusters. In addition, the RabbitMQ exporter is operational, allowing the collection and visualization of
application-specific metrics. Federation between Prometheus instances is set up, enabling the central
Prometheus instance to collect metrics from edge clusters, thus ensuring centralized monitoring.

5.4.5.2 Monitoring Metrics

Within UC3 there is a range of metrics that we want to leverage the monitoring framework to export. Many of
these fall into the range of metrics defined in D4.1, covering standard metrics such as CPU, RAM, bandwidth, and
latency. However, we are also working to export additional metrics relating to the specific architecture of our
application. In Figure 45 below, we visualise the batch processing time metric and its constituent metrics. In
essence, the queue length of the application is key to understanding the overall load of the entire application
(not just a single processor) and to predicting the future load of each individual processor. We are exploring

© AC32023 Page | 85

http://82.223.13.241:10908/api/v1/receive
https://infogw.api.openshift.com/metrics/v1/receive

D.5.2. Report on Integration the CECCM AC? ig‘i

integrating these metrics into the ML algorithms to give more accurate predictions of SLA violations based on
this queue length.

Data Batch Orchestrat <plits batch into jobs fevents) Bateh Time to Process
starlight

e.gi

-

(queue length * avg job processing time) / num processers

Green: (4% 10m) / 5 = G
Orange: (8 * 10) / 5 = 16m
Red: (4% 10m) / 5 = 18m

Batch Time to Process would fluctuate based on:
Job processing time (CPU/RAM)
Workload (jobs queued)

Message Bus
(RabbitMq)

;
Flmluunu I

Job processing time
Processor Processor
Processor Processer Processor \ :
T T
; ; T I '

/

| ! |

Figure 45. Batch Processing Time based on queue length

5.4.6 Compute LMS

To deliver the functionality of Compute LMS we exploit 2 core technologies, namely OpenShift (K8s) and ACM.
OpenShift provides us with the capability of not just deploying and orchestrating workloads, but with a
comprehensive platform to support resource provisioning such as CPU, RAM, Storage and Networking. OpenShift
is a key component in supporting the scalability and resilience required for the core astronomy processing
application in UC3. This allows the pre-existing processing applications (Starlight, PPXf, Steckmap) to be packaged
as K8s applications, enabling them to be seamlessly and comprehensively managed (deployed, moved, removed,
and scaled). It also provides an application eco-system where additional software components are available and
easily deployable, such as the RabbitMQ message broker utilised as part of this UC. Another advantage of this is
its ability to work in harmony with the AC® network Operator. Unlike relying solely on OpenShift’s native
operators, the AC? network operator is specifically designed to expose the application in a way that aligns with
the unique requirements of the UC3 project. OpenShift’s flexibility allows for the smooth deployment and
operation of this network operator without imposing limitations on how external access is managed. This level
of customization is crucial, as it allows the team to maintain control over how the application is accessed across
the network, ensuring that the RabbitMQ queues and Starlight processing endpoints are reachable as needed.

In the context of UC3, we utilise multiple OpenShift clusters to represent federated infrastructures that are
available to the Astronomer (via AC3) to carry out their data processing. Within the OpenShift/K8s ecosystem,
there are additional add-on components that cater to multi-cluster management. In this case, we utilise the
Advanced Cluster Management add-on, based on the Cloud Native Computing Foundation Open Cluster
Management project. ACM helps streamline the management of our multi-cluster setup, ensuring that all
clusters are consistently monitored, maintained, and configured according to the project's needs. In particular,
the workload placement capability of ACM offers us a central control point where we can deploy applications

© AC32023 Page | 86

D.5.2. Report on Integration the CECCM AC? ig‘i

across clusters, utilising an expressive set of rules to find the appropriate clusters or target a specific cluster.
Also, the Policy construct allows for consistent and unified governance of the managed clusters, ensuring that
each cluster, including newly added clusters, conforms to the required configuration.

5.4.7 Network LMS

Playing the role of Network LMS within this UC is the AC? Network Operator developed in WP4. The goal of the
network operator is to establish and manage connectivity between multiple K8s clusters in a dynamic way,
leveraging a range of underlying network technologies. Leveraging the operator allows us to form a cohesive
virtual application network where services and workloads can communicate across physical infrastructure
boundaries.

In our UC testbed, we currently have 1 management cluster (Hub) and 2 application clusters representing
individual infrastructure domains. The Network Operator is installed on the Hub cluster and is responsible for
orchestrating the network configuration required to ensure inter-site connectivity. The operator automates the
setup of our network by managing the lifecycle of connection tokens, distributing secrets, and creating links that
connect edge sites to the central hub.

apiVersion: ac3.redhat.com/vi1alphal
kind: AC3Network

metadata:

name: ray-ac3network
namespace: ac3no

spec:

link:

sourceCluster: "ac3-cluster-2"
targetCluster: "ac3-cluster-1"
sourceNamespace: "sk1"
targetNamespace:

- "sk3"

applications:

- "nginx"

- "rabbitmqg"

secretNamespace: "sk1"
secretName: "sk1-token"
secretName2: "sk1-token"

port: 5672

The Network operator establishes a secure communication between clusters, and the central site containing the
network operator generates a token. This token is used by our federated sites. This will enhance the workflow
by automating token distribution and secret management. Once the inter-site links are in place, the operator
maintains these connections and ensures that they are kept in sync as sites scale or update over time.

Applications deployed with the Network Operator are automatically exposed to the virtual application network.
This allows services running on one site to be discovered and accessed from any other site that is linked through
Skupper, a visual representation of which can be seen in Figure 46. The exposure configuration is handled by the
operator, which ensures consistent and reliable cross-cluster communication without requiring manual routing

© AC3 2023 Page | 87

D.5.2. Report on Integration the CECCM AC® KQT

rules or service mirroring configurations. This significantly reduces operational overhead and enables multi-site
deployments to be managed in a declarative and scalable way.

User Interface:

Cost 5 sk2 (1.8.4)

O}

ski(1.8.4)

= Cost 15

k3 (1.8.4)

Figure 46. Visual representation of Skupper links between namespaces/clusters

One of the key technical challenges in this setup is ensuring proper synchronization between central and cross
cluster sites—especially as updates and configuration changes are made centrally and need to propagate across
the network. This includes both the consistency of routing information and the reliable rollout of service
exposure configurations. Managing traffic flow between multiple edge sites also presents challenges around load
balancing and routing efficiency. As the number of interconnected sites grows, it becomes increasingly important
to monitor how traffic is distributed to avoid bottlenecks or uneven load. In addition, automated failover remains
a core focus, with efforts underway to support seamless rerouting if an inter-site link fails or a node becomes
temporarily unavailable.

The multi-site setup has been successfully deployed and validated, with a reliable interconnection established
between the central and multi-cluster sites. Applications deployed through the Network Operator are correctly
exposed and accessible across the network. Dynamic updates, such as the addition of new sites or the
reconfiguration of existing links, have been tested and confirmed to propagate as expected. The system
demonstrates strong resilience and flexibility, adapting to topology changes during runtime.

5.4.8 Remaining Integration

5.4.8.1 PPXF and STECKMAP Astronomy Software

While the UC3 application is designed to process astronomical data using various tools, including pPXF and
STECKMAP, the complete integration of both software components into the UC3 application's processing
workflow is still pending. This integration is vital to expand the UC3 application's ability to process multiple types
of astronomical data effectively. It will involve ensuring the Orchestrator can correctly identify, configure, and

© AC3 2023 Page | 88

D.5.2. Report on Integration the CECCM AC® KQT

dispatch data specifically formatted for each tool, and that their respective outputs are seamlessly handled and
stored. This integration will enable astronomers to leverage the UC3 application for a broader range of data
analysis needs, maximising its utility for diverse astronomical datasets.

5.4.8.2 Finalizing Metrics for Autoscaling Model

While the monitoring framework, using Prometheus and Thanos, collects a broad range of system and
application metrics, the specific metrics vital for the Al-driven autoscaling model still need to be integrated. For
the UC3 application, traditional CPU and RAM usage might not fully capture the workload. As such, we are
focusing on seamlessly integrating RabbitMQ queue length as an indicator of system load alongside average
batch processing and wait times. This involves refining Prometheus configurations to reliably expose these
specific application metrics and ensuring their smooth ingestion by the Al-LCM for both training and real-time
inference. The next step is confirming that the HPA effectively consumes these custom metrics, creating an
adaptation system driven by meaningful workload indicators.

5.4.8.3 Al Algorithms

The critical phase of training the Al algorithms on actual UC3 application data and their subsequent
programmatic integration with the LCM system remains. This requires collecting sufficient, representative
datasets from the UC3 application, particularly data correlating queue length and processing times with
performance degradation. The trained XGBoost model will then need integration within the Al-LCM mechanism:s,
ensuring it can process real-time queue length data and generate accurate predictions of impending SLA
violations. The final part of this integration involves establishing the automated pipeline for these predictions to
directly inform and trigger scaling decisions via the K8s HPA, orchestrated by Maestro. This will enable the system
to proactively adjust processor pod counts, ensuring dynamic adaptation to maintain performance efficiency and
SLA compliance.

5.4.8.4 Maestro (LCM)

Maestro is currently running on Ubitech infrastructure and has yet to be deployed onto the AC3testbed. Another
key outstanding task is updating Maestro's runtime processes to handle custom metrics like the RabbitMQ queue
length to effectively leverage the performance indicators and predictions from the monitoring framework and
Al-LCM algorithms. Furthermore, Maestro must be configured to effectively utilise the outputs from the
application and resource profiling decision engines from WP3 and WP4. These profiles will provide interpreted
metrics and Al predictions to Maestro, driving its scaling and adaptation decisions. The completion of this phase
will allow Maestro to fully orchestrate dynamic runtime updates and autoscaling of deployed services based on
real-time feedback and Al insights.

5.5 UC3 Integration summary
Table 5: UC3 Integration summary

Architecture component |Sub-Component |Description Integration summary
Allow the application developer to
define its application components [Complete
and SLA.

OSR Allow the generation of the AppD (Complete

Application gateway
(GUI)

© AC3 2023 Page | 89

D.5.2. Report on Integration the CECCM

AC:

Connects the OpenShift clusters

Manipulator

3. Manipulate data for input to
Orchestrator

Network LMS Complete
running on the ARS cloud P
MG Mom.tors application and resource I Premress
metrics
1. Manage the micro-services Life
1. In Progress
Cycle 2. In Progress
Al-based LCM 2. Horizontal autoscaling ' &
L and Decision Zero Touch Configuration: Predict
Application and resource o
Enforcement and describe infrastructure
management . . In Progress
resources and implementation of
automated corrective measures.
Al-Based
.. . Predicting application behavior In Progress
application profile
Al-Based Resource [Describe the resources of the
) i In Progress
Profile infrastructure
1. Data Provider 1. Astronomy data goes through
the Data connector
connector . . 3 1. Complete
2. Registers with the AC
Data management 2. Catalogue (data) . 2. Complete
Catalogues (Piveau)
3. Data 3. Complete

1. Manages dynamic microservice
migration across cloud and edge.
2. Moves microservices between

1. Not Started

Migration . 2. Not Started
J clusters based on real-time data.
. 3. Not Started
3. Balances loads and avoids
bottlenecks.
© AC32023 Page | 90

D.5.2. Report on Integration the CECCM AC® KQT

6 Conclusions

The objective of deliverable D5.2 was to capture the interim status of the work done across tasks T5.1 (AC3
components integration) and T5.2 (Testbed Integration). We believe that, through the detailed account of each
UC application and testbed architectures, UC integration design, as well as the thorough technical description of
the implementation carried out, this intermediate report on integration successfully captures the extensive work
that has been completed towards achieving our goal of a cohesive and highly effective AC3 system.

In UC1, significant progress has been made in integration of key components such as the Data
Managment and Dat Connectors, Service Catalogue, AppD, OSR and LCM.

In UC2, significant progress has been made in the core application and application Ul, as well as
integration of key components such as the Application Gateway, OSR/AppD and LCM

In UC3, work is complete/nearing completion on the core application for data orchestration and analysis,
as well as integration of key components such as the Data Connectors, Monitoring Framework and
AppD/OSR, as well as the Compute and Network LMS. Work is actively progressing on LCM and Al
integration.

To finalize the integration across all UCs, further efforts will concentrate on the remaining components:

For UC1, this primarily involves the full integration of the Application Gateway, LMS Edge/Cloud, the
advanced Al-based LCM, Al-based profiling, Monitoring functionalities, and the initiation of Zero-touch
configuration.

UC2 will focus on completing the Al-based LCM and Decision Enforcement, Zero-touch configuration for
drone availability, and the Al-based Application and Resource Profiling.

For UC3, the key remaining tasks include finalizing the Monitoring integration, Al-based LCM, Zero Touch
Configuration, and Al-Based profiles.

These final integration steps, detailed in the respective UC sections, are essential to achieve the complete vision
and capabilities of the CECCM.

As a result of the extensive collaboration between the UC and component owners, we believe a clear path to
realising the AC? vision is now in place. Based on the strong foundational work described within this report, the
consortium can now progress towards delivering tangible benefits of the CECCM through demonstrations,
experimentation and results within the final phase of the project.

© AC3 2023 Page | 91

D.5.2. Report on Integration the CECCM AC? =

7 References

[1] AC3 Project, "D5.1 "Initial integration and proofs of concept plan"," 03 February 2025. [Online].

[2] AC3 Project, "D2.4 "Business Analysis of CECC and Use Case Requirements"," 27 May 2024. [Online].
Available: https://ac3-project.eu/wp-content/uploads/2024/07/Final-draft AC3 Business-analysis-of-
CECC-and-use-case-requirements 22.05.2024 FINAL.pdf

[3] AC3Project, "D3.3 "Initial Report on Data Management for Applications in CECC"," 28 June 2024. [Online].
Available: https://ac3-project.eu/wp-content/uploads/2024/11/AC3 D3.3 20240222 v1.0.pdf

[4] AC3Project, "D4.1 "Initial Report on Mechanisms that Enable Green-Oriented Zero Touch Management
of CECC Resources"," 30 June 2024. [Online]. Available: https://ac3-project.eu/wp-
content/uploads/2024/11/AC3 D4.1 to be submitted annexes.pdf

[5] AC3Project, "D3.1 "Report on the application LCM in the CEC - Initial"," 2023 December 2023. [Online].
Available: https://ac3-project.eu/wp-content/uploads/2024/11/AC3 D3.1 v7.pdf

[6] AC3Project, "D2.3 "Report on technological tools for CECC"," 31 December 2023. [Online]. Available:
https://ac3-project.eu/wp-content/uploads/2024/07/AC3 D2.3 v1.6 version to be submitted.pdf

[7] Gil de Paz, A. et al., “MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting
ready for the telescope”, in Ground-based and Airborne Instrumentation for Astronomy VI, 2016, vol.
9908, Art. no. 99081K. do0i:10.1117/12.2231988.

[8] Drory, N. et al., “The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope”, The
Astronomical Journal, vol. 149, no. 2, Art. no. 77, I0P, 2015. doi:10.1088/0004-6256/149/2/77.

[9] Bacon, R. et al.,, “The MUSE second-generation VLT instrument”, in Ground-based and Airborne
Instrumentation for Astronomy Ill, 2010, vol. 7735, Art. no. 773508. doi:10.1117/12.856027.

[10] TMForum, “TMF633 Service Catalog Management APl v4.0.0”, 2021, Available:
https://www.tmforum.org/resources/standard/tmf633-service-catalog-api-user-guide-v4-0-0/

[11] TMForum, “TMF641 Service Ordering Management APl v4.1.1”, 2021, Available:
https://www.tmforum.org/resources/specifications/tmf641-service-ordering-management-api-user-
guide-v4-1-1/

[12] TMForum, “TMF638 Service Inventory Management APl v4.0.1”, 2020, Available:
https://www.tmforum.org/resources/specification/tmf638-service-inventory-api-user-guide-v4-0-0/
[13] TMForum, “TMF674 Geographic Site Management APl v4.0.1”, 2020, Available:
https://www.tmforum.org/resources/specification/tmf674-geographic-site-management-api-user-

guide-v4-0/

©AC3 2023 Page | 92

https://ac3-project.eu/wp-content/uploads/2024/07/Final-draft_AC3_Business-analysis-of-CECC-and-use-case-requirements_22.05.2024_FINAL.pdf
https://ac3-project.eu/wp-content/uploads/2024/07/Final-draft_AC3_Business-analysis-of-CECC-and-use-case-requirements_22.05.2024_FINAL.pdf
https://ac3-project.eu/wp-content/uploads/2024/07/Final-draft_AC3_Business-analysis-of-CECC-and-use-case-requirements_22.05.2024_FINAL.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.3_20240222_v1.0.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.3_20240222_v1.0.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D4.1_to_be_submitted_annexes.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D4.1_to_be_submitted_annexes.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D4.1_to_be_submitted_annexes.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.1_v7.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.1_v7.pdf
https://ac3-project.eu/wp-content/uploads/2024/07/AC3_D2.3_v1.6_version_to_be_submitted.pdf
https://ac3-project.eu/wp-content/uploads/2024/07/AC3_D2.3_v1.6_version_to_be_submitted.pdf
https://www.tmforum.org/resources/standard/tmf633-service-catalog-api-user-guide-v4-0-0/
https://www.tmforum.org/resources/specifications/tmf641-service-ordering-management-api-user-guide-v4-1-1/
https://www.tmforum.org/resources/specifications/tmf641-service-ordering-management-api-user-guide-v4-1-1/
https://www.tmforum.org/resources/specification/tmf638-service-inventory-api-user-guide-v4-0-0/
https://www.tmforum.org/resources/specification/tmf674-geographic-site-management-api-user-guide-v4-0/
https://www.tmforum.org/resources/specification/tmf674-geographic-site-management-api-user-guide-v4-0/

D.5.2. Report on Integration the CECCM

8 Annex I: OSR Application Descriptors

This Annex provides a view of the complete OSR AppD for each UC.

UC1 OSR Application Descriptor
"UC1 IoT Data Processing"

"edgebroker"

lle‘3ll
"sparkworks/ac3-edge-broker:0.3"
"edgebroker"

"RABBITMQ_HIPE_COMPILE"
nqn

"logger"
"latest”
"sparkworks/ac3-amgp-http-request-logger:latest”
"logger"

- "4000:4000"

"HTTP_SERVER_PORT"
"4000"

"consumer"
"latest"
"sparkworks/ac3-connector-http-http-consumer:latest"

consumer"

"28180:28180"
"28181:28181"
"28182:28182"
"28183:28183"

"WEB_BASE_URL"
"WEB_HTTP_PORT"

"28180"
"WEB_HTTP_MANAGEMENT PORT"

© AC32023 Page | 93

http://ionos-s1.sparkworks.net/
http://ionos-s1.sparkworks.net/

D.5.2. Report on Integration the CECCM

Value: "28181"

Name: "WEB_HTTP_PROTOCOL PORT"
Value: "28182"

Name: "WEB_HTTP_CONTROL_ PORT"
Value: "28183"

Name: "ASSET_NAME"

Value: "ucl-stream"

Name: "PROVIDER_DOMAIN"

Value: "

- MicroserviceName: "edgemapper"
Version: "@.5"
Image: "sparkworks/sw-mapper-ac3:0.5"
ID: "edgemapper"
Ports:
- "5026:5026"
- "8026:8026"
EnvironmentVariables:
- Name: "RABBITMQ_PORT"
Value: "5672"
Name: "RABBITMQ HOST"
Value: "edgebroker"
Name: "RABBITMQ USERNAME"
Value: "mapperucl™
Name: "RABBITMQ_ PASSWORD"
Value: "TmUS5WmuikTQnDrWkRs7D"
Name: "QUEUE_OUT"
Value: "mapperucl.mapped”
Name: "QUEUE_IN"
Value: "mapperucl.data"
Name: "QUEUE_COMMANDS"
Value: "mapperucl.commands"

- MicroserviceName: "edgeapplication”
Version: "0.4"
Image: "sparkworks/data manipulator ucl:0.4"
ID: "edgeapplication”
ResourceRequirements:
Cpu: "4 vCPUs™
Memory: "8Gi"
ReplicaCount: "1"
Ports:
- "5001:5001"

© AC3 2023 Page | 94

http://ds.uc1.ac3.sparkworks.net:18182/protocol
http://ds.uc1.ac3.sparkworks.net:18182/protocol

D.5.2. Report on Integration the CECCM

EnvironmentVariables:
- Name: "RABBITMQ_PORT"
Value: "5672"
Name: "RABBITMQ HOST"
Value: "edgebroker"
Name: "RABBITMQ USERNAME"
Value: "ml"
Name: "RABBITMQ PASSWORD"
Value: "7Igk7uulOt”
Name: "QUEUE_OUT"
Value: "mapperucl.processed.ml"
Name: "QUEUE_IN"
Value: "mapperucl.mapped.ml"

- MicroserviceName: "edgeapplication-2"
Version: "0.4"
Image: "sparkworks/data manipulator ucl-2:0.4"
ID: "edgeapplication-2"
ResourceRequirements:
Cpu: "4 vCPUs"
Memory: "8Gi"
ReplicaCount: "1"
Ports:
- "5005:5001"
EnvironmentVariables:
- Name: "RABBITMQ_PORT"
Value: "5672"
Name: "RABBITMQ HOST"
Value: "edgebroker"
Name: "RABBITMQ USERNAME"
Value: "ml"
Name: "RABBITMQ PASSWORD"
Value: "7Igk7uulOt”
Name: "QUEUE_oOUT"
Value: "mapperucl.processed.ml"
Name: "QUEUE_IN"
Value: "mapperucl.mapped.ml-2"

Global SLA:
ServiceAvailability: "99.9%"
MaxLatency: "500 ms"
MaxResponseTime: "

Low
DataThroughput: "High"

© AC3 2023 Page| 95

D.5.2. Report on Integration the CECCM AC® Q

UC1 AppD

UC2 OSR Application Descriptor

"Surveillance System"
"1.0.0"

"backend"
"1.0"
"capy8ra/ac3-uc2-backend:latest"
"backend"

- "database"

"4 vCPU"
llgGill

||99

: "Low
o "High"
K

"DJANGO_DEBUG"
"False"
"LOGGING_LEVEL"
"INFO"
"DB_HOST"
"db"
"DB_PORT"
"5432"
"DB_NAME"
"ac3"
"DB_USER"
"postgres"
"DB_PASS"
"root"
"RECAPTCHA SECRET_KEY"
"6LfUgiEqAAAAADMOAT7V8GNTL6VCVIWEW_UJIDIX0J"
"8000"
"HTTP/REST"

© AC3 2023

http://backend.fingletek.com/

D.5.2. Report on Integration the CECCM

"true"

"Central Cloud"
"cloud"

"frontend"
"1.0"
"capy8ra/ac3-uc2-frontend:latest"
"frontend"

"backend"
- "deepstream"

"1 vCPU"
IIZGiIl

"99.9%"

: "Low
"High”
nqw

"VITE_USER_SERVICE_URL"

"VITE_USER_SERVICE_BASE_URL"

: "VITE_REACT_APP_SITE_KEY"
"6LfUgiEGAAAAAKIWZFsVqrlI6YbpXgUzde85ip3z-"

ngq73"
"HTTP/REST"
"true"

"Central Cloud"
"cloud"

"deepstream”
"1.1.0"
"capy8ra/ac3-uc2-ds:28"
"deepstream"

"backend"

© AC3 2023

Page | 97

http://172.21.16.156:30033/api/v1
http://172.21.16.156:30033/
http://frontend.fingletek.com/

D.5.2. Report on Integration the CECCM

- "database"

"4 vCPUs"

"16Gi"
° "N/A"
"NVIDIA GPU (specific model based on

"99.9%"

: "Low
"High"
n 1l|

"LOG_LEVEL"
"INFO"
"DB_HOST"
"db"
"DB_PORT"
"5432"
"DB_NAME"
"ac3"
"DB_USER"
"postgres"
"DB_PASSWORD"
"root"
"NO_DISPLAY"
nqn
"TCP/RTSP"
"false"

"Edge"
"edge"

: "db"
"8.1.0"
"postgres:17"
"database"

"@.2 vCPU"
"256MB"
"10GB"

"99.9%"

© AC3 2023

throughput)"

D.5.2. Report on Integration the CECCM

. "Low
"High n

n3n

"POSTGRES_USER"
"postgres"
"POSTGRES_PASSWORD"
"root"
"POSTGRES_DB"
"ac3"
"psql://database.fingletek.
"5432"
"TCP"
"false"

"Central Cloud"
"cloud"

"backend"
"db"
. "TCpP"
"5432"

"Less than 500 ms"
"99.9%"
"High"
"Less than 1%"

"frontend"
"deepstream"
: "TCP"
"8585"

"Less than 500 ms"
"99,9%"
"High"
"Less than 1%"

"frontend"
"backend"
nrCp"

© AC32023 Page | 99

D.5.2. Report on Integration the CECCM

"8000"

"Less than 500 ms"
"99.9%"
"High"
"Less than 1%"

"99,9%"
"500 ms"

"High"

UC2 AppD

UC3 OSR Application Descriptor
: "starlight-uc3"
:"1.0.0"

: "uc3-pv-volume"
: "PersistentVolume"
: "standard"
:"10Gi"
"ReadWriteOnce"

: "/mnt/ucmdata”

: "uc3-pv-claim”
: "standard"

"ReadWriteOnce"

: "starlight-sa"

© AC3 2023 Page | 100

D.5.2. Report on Integration the CECCM

Dvlt

: "ServiceAccount"

: "starlight-sa"

: "privileged-role"

: "rbac.authorization.k8s.io/v1"

: "RoleBinding"

: "privileged-role”

: "rbac.authorization.k8s.io"
: "ClusterRole"

: "system:openshift:scc:privileged"

: "ServiceAccount"
: "starlight-sa"

: "rabbitmq"
: "3-management”
: "rabbitmq:3-management"
: "rabbitmq"

: "orchestrator"

al

:"0.5 vCPU"
:"1GI"

:"5672"
:"15672"

: "RABBITMQ_DEFAULT_USER"

: "guest"

© AC3 2023

Page | 101

D.5.2. Report on Integration the CECCM

: "RABBITMQ_DEFAULT_PASS"

: "guest”

: "orchestrator"
:"1.0"
: "rayc/ucm-producer"
: "orchestrator"
: "orchestrator"

- "rabbitmq"

1 "2 vCPU"
:"4GI1"

:"99.9%"
D "N/A"
: "High"
21
: "starlight-sa"

: "RABBITMQ_USER"
: "guest”
: "RABBITMQ_PASSWORD"
: "guest”
: "RABBITMQ_HOST"
: "rabbitmq"
: "RABBITMQ_PORT"
:"5672"
: "INPUT_DIR"
: "/starlight/data/input"
: "OUTPUT_DIR"
: "/starlight/data/output”
: "BATCH_SIZE"
5

© AC3 2023 Page | 102

D.5.2. Report on Integration the CECCM

Volumes:

- Name: "uc3-pv-storage"
VolumeSource:
PersistentVolumeClaim:
ClaimName: "uc3-pv-claim”
VolumeMounts:

- Name: "uc3-pv-storage"
MountPath: "/starlight/"
InitContainers:

- Name: "init"

Image: "busybox:1.28"
securityContext:
privileged: true
volumeMounts:

- mountPath: "/starlight/"
name: "uc3-pv-storage"

Command:

I -d /starlight/data]; then mkdir -p /starlight/data; fi;

I -d /starlight/runtime]; then mkdir -p /starlight/runtime; fi;

I'-d /starlight/runtime/infiles ; then mkdir -p /starlight/runtime/infiles; fi;
I'-d /starlight/runtime/input]; then mkdir -p /starlight/runtime/input; fi;

I -d /starlight/data/output]; then mkdir -p /starlight/data/output; fi;

if [

if [

if [

if [

if [! -d /starlight/data/input]; then mkdir -p /starlight/data/input; fi;

if [

if [! -d /starlight/data/input/processed]; then mkdir -p /starlight/data/input/processed; fi;
if [

I -f /starlight/runtime/processlist.txt]; then touch /starlight/runtime/processlist.txt; fi;

- MicroserviceName: "data-connector"

Version: "1.0"

Image: "quay.io/bcapper30/ionos-s3-consumer-env"
ID: "data-connector"

ClusterAffinity: "orchestrator"

Dependencies:

- "orchestrator"”

ResourceRequirements:

Cpu: "1 vCPU"

© AC3 2023 Page | 103

D.5.2. Report on Integration the CECCM

Memory: "2Gi"
MicroservicesSLAs:
ServiceAvailability: “99.9%"
MaxResponseTime: "N/A"
DataThroughput: "Medium"
ReplicaCount: "1"

EnvironmentVariables:

- Name: "JAVA_TOOL_OPTIONS"

Value: "-Dedc.fs.config=/app/resources/config.properties"
- Name: "EDC_PARTICIPANT_ID"

Value: "consumer"

- Name: "WEB_HTTP_PORT"

Value:; "9191"

- Name: "WEB_HTTP_PATH"

Value: "/api"

- Name: "WEB_HTTP_MANAGEMENT_PORT"

Value: "9192"

- Name: "WEB_HTTP_MANAGEMENT_PATH"

Value: "/management”

- Name: "WEB_HTTP_PROTOCOL_PORT"

Value: "9292"

- Name: "WEB_HTTP_PROTOCOL_PATH"

Value: "/protocol"

- Name: "WEB_HTTP_CONTROL_PORT"

Value: "9293"

- Name: "WEB_HTTP_CONTROL_PATH"

Value: "/control”

- Name: "WEB_HTTP_PUBLIC_PORT"

Value: "9393"

- Name: "WEB_HTTP_PUBLIC_PATH"

Value: "/public"

- Name: "EDC_DSP_CALLBACK_ADDRESS"

Value: " !

- Name: "EDC_DATAPLANE_TOKEN_VALIDATION_ENDPOINT"
Value: " !

- Name: "EDC_DATAPLANE_API_PUBLIC_BASEURL"

Value: " !

- Name: "EDC_DSP_HTTP_ENABLED"

© AC3 2023 Page | 104

http://consumer:9292/protocol
http://localhost:9293/control/token
http://localhost:9393/public

D.5.2. Report on Integration the CECCM

Value: "true"
- Name: "EDC_API_AUTH_KEY"

Value: "password"

- Name: "EDC_TRANSFER_PROXY_TOKEN_SIGNER_PRIVATEKEY_ALIAS"

Value: "edc.connector.private.key"

- Name: "EDC_TRANSFER_PROXY_TOKEN_VERIFIER_PUBLICKEY_ALIAS"

Value: "edc.connector.public.key"

- Name: "EDC_VAULT_HASHICORP_URL"
Value: " !

- Name: "EDC_VAULT_HASHICORP_TOKEN"
Value: "test-token"

- Name: "EDC_VAULT_HASHICORP_TIMEOUT_SECONDS"
Value: "30"

- Name: "EDC_IONOS_ACCESS_KEY"

Value: "xxx"

- Name: "EDC_IONOS_SECRET_KEY"

Value: "xxx"

- Name: "EDC_IONOS_ENDPOINT_REGION"
Value: "eu-central-2"

- Name: "EDC_IONOS_TOKEN"

Value: "xxx"

Ports:

- ContainerPort: 9191

- ContainerPort: 9192

- ContainerPort: 9292

- ContainerPort: 9293

- ContainerPort: 9393

- MicroserviceName: "starlight"
Version: "1.0"

Image: "rayc/ucm-processor"
ID: "starlight"

ClusterAffinity: "processor"
Dependencies:

- "eventreceiver"
ResourceRequirements:

Cpu: "4 vCPU"

Memory: "8Gi"

© AC3 2023 Page | 105

http://vault:8200/

D.5.2. Report on Integration the CECCM

:"99.9%"
D "N/A"
: "High"
2
: "starlight-sa"

: "/docker/starlight/STARLIGHTv04"

./bash_script2.sh

: "uc3-pv-storage"

: "uc3-pv-claim”

: "uc3-pv-storage"
: "/starlight/"

: 8080
: "eventreceiver"
:"1.0"
: "rayc/ucm-receiver"
: "eventreceiver"
: "processor”

"rabbitmqg"

: "1 vCPU"
:"2Gi"

© AC3 2023

Page | 106

D.5.2. Report on Integration the CECCM

: "RABBITMQ_USER"
: "guest”
: "RABBITMQ_PASSWORD"

: "guest”

: "uc3-pv-storage"

: "uc3-pv-claim"

: "uc3-pv-storage"
: "/starlight/"

: "orchestrator"
: "rabbitmq"
:"TCP"
. "5672"
: "data-connector"
: "orchestrator"
: "HTTP"
:"9192"
: "eventreceiver"
: "rabbitmq"
:"TCP"
:"5672"
: "eventreceiver"
: "starlight”
: "HTTP"
: "8080"

:"99.9%"
:"500 ms"
. "N/A"
: "High"

UC3 AppD

© AC3 2023 Page | 107

D.5.2. Report on Integration the CECCM AC? =

© AC32023 Page | 108

	1 Executive Summary
	2 Introduction
	2.1 Overview – Purpose and objectives
	2.2 Link with other project activities
	2.3 Mapping AC3 Outputs
	2.4 Deliverable Overview and Report Structure

	3 UC1
	3.1 Use Case Description
	3.1.1 Objectives
	3.1.2 UC1 Stakeholders
	3.1.2.1 End Users / Smart Building Operators
	3.1.2.2 Application/Software Developers
	3.1.2.3 Infrastructure Provider / CECCM Integrator

	3.2 Use Case Architecture
	3.2.1 Use Case Application
	3.2.2 UC Testbed – Hardware and Software
	3.2.2.1 Data Source Testbed
	3.2.2.2 Edge Compute Testbed
	3.2.2.3 Cloud Compute Testbed

	3.3 Component Integration Design
	3.4 Component Integration Status
	3.4.1 Data Management and Connectors
	3.4.2 Service Catalogue
	3.4.3 Data Source Deployment
	3.4.4 Application Descriptor – OSR
	3.4.5 LCM
	3.4.5.1 Application Deployment
	3.4.5.2 Application Adaptation
	3.4.5.3 Migration Algorithm
	3.4.5.4 AI-based LCM and Decision Enforcement Algorithms

	3.5 Remaining Integration
	3.6 UC1 Integration summary

	4 UC2
	4.1 Use Case Description
	4.1.1 Use Case Objectives
	4.1.2 UC2 Stakeholders
	4.1.2.1 Users / System Administrators
	4.1.2.2 Application Developers / DevOps
	4.1.2.3 Infrastructure Provider

	4.2 Use Case Architecture
	4.2.1 Use Case Application
	4.2.1.1 Application Components
	4.2.1.2 Component Interaction

	4.2.2 UC Testbed – Hardware and Software
	4.2.2.1 Infrastructure Details
	EURECOM Edge
	EURECOM Far Edge

	4.3 Component Integration Design
	4.4 Component Integration Status
	4.4.1 Application Interface
	4.4.2 GUI for Developer (Application Gateway)
	4.4.3 Ontology and Semantic Reasoner
	4.4.4 LCM
	4.4.4.1 Application Deployment
	4.4.4.2 Application Adaptation
	4.4.4.3 AI LCM algorithms

	4.4.5 Monitoring
	4.4.5.1 Monitoring Framework Integration
	4.4.5.2 Monitoring Metric

	4.4.6 Compute LMS
	4.4.7 Network LMS

	4.5 Remaining Integration
	4.5.1 Deployment via GUI
	4.5.2 Integration of Predictive Models with AI-based LCM
	4.5.3 Final Use Case Test

	4.6 UC2 Integration Summary

	5 UC3
	5.1 Use Case Description
	5.1.1 Use Case Objectives
	5.1.2 UC3 Stakeholders
	5.1.2.1 Users / Astronomers
	5.1.2.2 Application Developers / DevOps
	5.1.2.3 Infrastructure Provider

	5.2 Use Case Architecture
	5.2.1 Use Case Application
	5.2.1.1 Processor

	5.2.2 UC3 Testbed – Hardware and Software
	5.2.2.1 Infrastructure Details

	5.3 Component Integration Design
	5.4 Component Integration Status
	5.4.1 Application Interface
	5.4.2 Data Management and Connectors
	5.4.2.1 Piveau catalogue
	5.4.2.2 Data type and examples (.fits)
	5.4.2.3 EDC S3 Extended Connectors Developed by Ionos

	5.4.3 OSR and Application Descriptor
	5.4.4 LCM
	5.4.4.1 Application Deployment
	5.4.4.2 Application Adaptation
	5.4.4.3 AI LCM algorithms

	5.4.5 Monitoring
	5.4.5.1 Monitoring Framework Integration
	5.4.5.2 Monitoring Metrics

	5.4.6 Compute LMS
	5.4.7 Network LMS
	5.4.8 Remaining Integration
	5.4.8.1 PPXF and STECKMAP Astronomy Software
	5.4.8.2 Finalizing Metrics for Autoscaling Model
	5.4.8.3 AI Algorithms
	5.4.8.4 Maestro (LCM)

	5.5 UC3 Integration summary

	6 Conclusions
	7 References
	8 Annex I: OSR Application Descriptors
	UC1 OSR Application Descriptor
	UC2 OSR Application Descriptor
	UC3 OSR Application Descriptor

