

AC3 project has received funding from European Union’s Horizon Europe research and innovation
programme under Grand Agreement No 101093129.

D.5.2 Report on Integration the CECCM

Document Summary Information

Project Identifier HORIZON-CL4-2022-DATA-01. Project 101093129

Project name Agile and Cognitive Cloud-edge Continuum management

Acronym AC3

Start Date January 1, 2023 End Date December 31, 2025

Project URL www.ac3-project.eu

Deliverable D5.2 Report on Integration of the CECCM

Work Package WP5

Contractual due date M24: 31st December

2024

Actual submission date M29: May 2025

Type R (Report, Document) Dissemination Level PU (Public)

Lead Beneficiary RHT

Responsible Author Ray Carroll (RHT)

Contributors Ray Carroll (RHT), Ben Capper (RHT), Ryan Jenkins (RHT), D. Amaxilatis (SPA), N.

Tsironis (SPA), T. Sarantakos (SPA), D. Klonidis, N. Psaromanolakis (UBI), Mario

Chamorro (UCM), Eduardo Ojeda (IQU), Abdelhak Kadouma (FIN), Mohamed Mekki

(EUR), Mohamed Mokhtari (EUR), Meliani Abd Elghani(EUR)

http://www.ac3-project.eu/

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 2

Peer reviewer(s) Amadou Ba (IBM), John Beredimas (CSG)

Revision history (including peer reviewing & quality control)

Version Issue Date % Complete Changes Contributor(s)

V0.1 12/02/2025 5% Initial Deliverable Structure Ray Carroll (RHT)

V0.2 12/03/2025 60% First Round of Contributions All

V0.3 20/03/2025 70% Initial Review Ray Carroll (RHT)

Ben Capper (RHT)

V0.4 01/04/2025 80% UC1, UC2, UC3 Updates Ray Carroll (RHT)

Dimitris Amaxilatis (SPA)

Abdelhak Kadouma (FIN)

Dimitris Klonidis (UBI)

Nikos Psaromanolakis (UBI)

V0.5 11/04/2025 85% ToC, Figures, Executive
Summary, Annex

Ray Carroll (RHT)

V0.6 22/04/2025 90% Peer Review Amadou Ba (IBM)

John Beredimas (CSG)

V0.7 01/05/2025 93% Document Cleanup Ben Capper (RHT)

V0.8 19/05/2025 95% Coordinator Review Adlen Ksentini (EUR)

V0.9 24/05/2025 97% Coordinator Review Comments Ben Capper (RHT)

Dimitris Amaxilatis (SPA)

Eduardo Ojeda (IQU)

 V1.0 24/07/2025 100% Final Version

Disclaimer

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 3

The content of this document reflects only the author’s view. Neither the European Commission nor the HaDEA

are responsible for any use that may be made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other

participant in the AC3 consortium make no warranty of any kind with regard to this material including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose.

Neither the AC3 consortium nor any of its members, their officers, employees or agents shall be responsible or

liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the AC3 Consortium nor any of its members,

their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage

caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© AC3 Consortium. This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made through

appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

Table of Contents

1 Executive Summary .. 9
2 Introduction .. 10

2.1 Overview – Purpose and objectives ... 10
2.2 Link with other project activities .. 10
2.3 Mapping AC3 Outputs .. 10
2.4 Deliverable Overview and Report Structure .. 11

3 UC1 ... 13
3.1 Use Case Description .. 13

3.1.1 Objectives ... 13
3.1.2 UC1 Stakeholders ... 14

3.2 Use Case Architecture .. 14
3.2.1 Use Case Application .. 14
3.2.2 UC Testbed – Hardware and Software ... 16

3.3 Component Integration Design .. 20
3.4 Component Integration Status ... 23

3.4.1 Data Management and Connectors ... 23
3.4.2 Service Catalogue ... 24
3.4.3 Data Source Deployment ... 27
3.4.4 Application Descriptor – OSR ... 29
3.4.5 LCM ... 31

3.5 Remaining Integration .. 34
3.6 UC1 Integration summary .. 35

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 4

4 UC2 ... 37
4.1 Use Case Description .. 37

4.1.1 Use Case Objectives ... 37
4.1.2 UC2 Stakeholders ... 37

4.2 Use Case Architecture .. 38
4.2.1 Use Case Application .. 38
4.2.2 UC Testbed – Hardware and Software ... 40

4.3 Component Integration Design .. 42
4.4 Component Integration Status ... 46

4.4.1 Application Interface .. 46
4.4.2 GUI for Developer (Application Gateway).. 49
4.4.3 Ontology and Semantic Reasoner .. 52
4.4.4 LCM ... 54
4.4.5 Monitoring .. 57
4.4.6 Compute LMS ... 58
4.4.7 Network LMS .. 58

4.5 Remaining Integration .. 58
4.5.1 Deployment via GUI ... 58
4.5.2 Integration of Predictive Models with AI-based LCM .. 58
4.5.3 Final Use Case Test ... 59

4.6 UC2 Integration Summary .. 59
5 UC3 ... 60

5.1 Use Case Description .. 60
5.1.1 Use Case Objectives ... 60
5.1.2 UC3 Stakeholders ... 60

5.2 Use Case Architecture .. 61
5.2.1 Use Case Application .. 61
5.2.2 UC3 Testbed – Hardware and Software ... 63

5.3 Component Integration Design .. 65
5.4 Component Integration Status ... 69

5.4.1 Application Interface .. 69
5.4.2 Data Management and Connectors ... 70
5.4.3 OSR and Application Descriptor ... 76
5.4.4 LCM ... 78
5.4.5 Monitoring .. 84
5.4.6 Compute LMS ... 86
5.4.7 Network LMS .. 87
5.4.8 Remaining Integration .. 88

5.5 UC3 Integration summary .. 89
6 Conclusions ... 91
7 References .. 92
8 Annex I: OSR Application Descriptors .. 93

UC1 OSR Application Descriptor .. 93
UC2 OSR Application Descriptor .. 96

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 5

UC3 OSR Application Descriptor .. 100

Table of Figures

Figure 1 - Dashboard showing sensor readings, processing speed, and machine learning statistics in real time. 16

Figure 2. Depiction of the UC1 Data Source, Edge and Cloud Domains and the flow of data between them. 17

Figure 3. The IQU Offices IoT Data Source Domain that represents the IoT infrastructure of UC1. 18

Figure 4. Exposed Endpoints of the K8s Cluster API .. 19

Figure 5. Architecture for Exposing the K8s API Server Through Domain-Level Port Forwarding 20

Figure 6. UC1 / AC3 component integration... 21

Figure 7. UC1 application definition and deployment ... 22

Figure 8. UC1 Data Processing Pipeline.. 23

Figure 9: UC1 Dataset ... 24

Figure 10. UC1 Connector .. 25

Figure 11. UC1 Logger .. 26

Figure 12. UC1 Mapper .. 27

Figure 13: Overview of UC1 Architecture, highlighting the integration of LiSO's orchestration layers and image

registry .. 32

Figure 14. Architecture of the video surveillance and environmental monitoring system, illustrating data

processing across central servers, regional edge nodes, and far-edge devices in an urban parking lot............... 39

Figure 15. Testbed Architecture ... 42

Figure 16. Mapping of the AC3 Component Architecture to the Current Implementation in UC2. 43

Figure 17. Microservice Architecture and Placement in UC2 .. 44

Figure 18. Detailed Workflow for UC2 Application Deployment Using the AC3 CECC Manager Framework 45

Figure 19. UC2 User Authentication screen .. 46

Figure 20. UC2 Edge Server configuration screen .. 47

Figure 21. UC2 Far Edge Server configuration screen. ... 47

Figure 22. UC2 device management .. 48

Figure 23. Real-time detection and monitoring dashboard... 48

Figure 24. Query and archive review panel ... 49

Figure 25. UC2 Application metadata input ... 50

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 6

Figure 26. Microservices configuration form ... 51

Figure 27. Networking Graph Configuration .. 51

Figure 28. Translating the AC3 AppD to a LiSO Network Service Descriptor .. 55

Figure 29. Detailed Architecture of LiSO and Its Mapping to AC3 Framework Components 56

Figure 30. UC3 Application Architecture Orchestrator .. 62

Figure 31. UC3 Infrastructure / AC3 Component Integration... 65

Figure 32. UC3 / AC3 Component Integration – How UC3 leverages the components developed in AC3 66

Figure 33. UC3 Application Onboarding Pipeline ... 67

Figure 34. UC3 Data Processing Pipeline.. 68

Figure 35. UC3 Monitoring Sequence Diagram .. 69

Figure 36. S3 Bucket File Structure .. 70

Figure 37. Example .fits data ... 72

Figure 38. MEGARA Data-cubes as .fits file batches ... 72

Figure 39. Schematic representation of the OSR-to-MAESTRO Exposure translation process, in which the

K8S Manifests files are extracted by the AC3 App Descriptor for each micro-service. 79

Figure 40. Process workflow for the deployment of an AC application request from the OSR translation

point to the interfacing with ACM ... 80

Figure 41. Schematic representation of the CustomManifestWork creation from the Manifest files and the

combination of cluster metadata using a cluster labelling scheme.. 80

Figure 42. The MAESTRO LCM architecture adapted to the AC3 architecture ... 82

Figure 43. Custom metric exposure process and metrics injection into the system ... 83

Figure 44. Visual representation of Our monitoring Config with our Thanos URL inserted 85

Figure 45. Batch Processing Time based on queue length .. 86

Figure 46. Visual representation of Skupper links between namespaces/clusters ... 88

List of Tables

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions .. 10

Table 2: UC1 Edge K8s Cluster Details ... 18

Table 3: UC1 Integration summary .. 36

Table 4: UC2 Integration summary .. 59

Table 5: UC3 Integration summary .. 89

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 7

Glossary of terms and abbreviations used

Abbreviation / Term Description

AC3 Agile and Cognitive Cloud edge Continuum management

ACM Advanced Cluster Management

AI Artificial Intelligence

API Application Programming Interface

AppD Application Descriptor

CECC Cloud Edge Computing Continuum

CECCM Cloud Edge Computing Continuum Manager

CI/CD Continuous Integration/Continuous Delivery

CRUD Create, Read, Update, Delete

GUI Graphical User Interface

HPA Horizontal Pod Autoscaler

IFS Integral Field Spectroscopy

IoT Internet of Things

JWST James Webb Space Telescope

KPI Key Performance Indicator

K8s Kubernetes

LAN Local Area Network

LCM Life-Cycle Management

LISO Lightweight Edge Slice Orchestration

LMS Local Management System

ML Machine Learning

NSD Network Service Descriptors

NBI
Northbound Interface

OSR Ontology and Semantic aware Reasoner

OWL Web Ontology Language

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 8

PaaS Platform as a Service

RAM Random Access Memory

RDF Resource Description Framework

RLOs Resource Level Objects

RL
Reinforcement Learning

ROL
Resource Orchestration Layer

RBAC
Role-Based Access Control

S3
Simple Storage Service

SD-WAN Software-Defined Wide Area Network

SLA Service Level Agreement

TMF TM Forum

UAV Unmanned Aerial Vehicle

UC Use Case

VLT Very Large Telescope

VoD Video on Demand

XAI eXplainable AI

XGBoost Extreme Gradient Boosting

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 9

1 Executive Summary

In the present document, D5.2 Report on Integration of the CECCM, we provide a comprehensive description of
the work carried out thus far on the integration of the Cloud Edge Computing Continuum Manager (CECCM)
components within the AC3 project. As per [1] D5.1 Initial Integration and proofs of concept plan, a Use Case
(UC) oriented approach to integration is taken, in which the CECCM components of the architecture are
integrated across the three UCs (Internet of Things and Data, Smart Monitoring System using Unmanned Aerial
Vehicles, and Deciphering the universe: processing hundreds of TBs of astronomy data), subject to their
relevance to the specific UC. The core aim is to clearly demonstrate how the integration of the CECCM
components supports and augments the UCs, and the work completed towards that goal. As such, this report
gives a comprehensive level of detail on the partial technical implementation of the component integration.

In Sections 3, 4, and 5, on a UC basis, we briefly revisit the core goals and objectives and then describe the
architecture of both the UC application and testbed. We then give a detailed description and workflow of how
the CECCM components are integrated into the UC, before finally going into a detailed description of the
integration of each component. A brief summary of the 3 UCs is given below:

1. UC1, IoT and Data, strives to optimize resource allocation in office buildings. It involves deploying

sensors to monitor environmental factors and human presence, with the goal of maximizing occupant

health and comfort by adjusting lighting and heating systems in real-time.

2. UC2, Smart Monitoring System using UAVs, revolves around the development and implementation of a

Smart Monitoring System utilizing unmanned aerial vehicles (UAV), AI/Machine Learning (ML)

technologies, and edge computing to enhance video surveillance and environmental monitoring. Its

primary goal is to optimize urban security, traffic management, and environmental tracking through the

CECCM.

3. UC3, Deciphering the universe: processing hundreds of TBs of astronomy data, analyses large 3D data

cubes of astronomy data, which contain a detailed image and spectral information about galaxies, to

extract key insights such as stellar kinematics and population characteristics. Its main challenge is that

handling these vast datasets requires significant computing power, memory, and efficient data

management, as well as scalable and distributed processing capabilities.

All the UCs will demonstrate the core components of the AC3 architecture, including the GUI, OSR, LCM, and

LMS. While UC2 highlights the integration of far-edge nodes, such as drones, both UC1 and UC2 showcase data

management capabilities; specifically focusing on the integration of hot and cold data sources, respectively.

Additionally, each UC will incorporate AI-based algorithms, as defined in WP3 and WP4, to enhance LCM

functionalities and manage application life cycles. This includes features such as AI-driven application migration

and AI/XAI-based workload scalability management.

Further, within each UC section, and specifically in their concluding integration summaries, the deliverable

provides a clear status of integrated components, identifying those that have been finalized and those that

require further work, building upon the initial integration plans outlined in D5.1.

The main conclusion of this report, detailed in Section 6, is that, through the extensive collaborative work carried

out by both the UC and component owners, a clear path to realising the AC3 vision is now in place. Based on the

strong foundational work described within this report, the consortium can now progress towards delivering

tangible benefits of the CECCM through demonstrations, experimentation, and results within the final phase of

the project.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 10

2 Introduction
2.1 Overview – Purpose and objectives

To date, the project has been focused on designing and refining the core AC3 CECCM architecture, as well as

cultivating innovation within each of the CECCM component areas. In D5.1, we then outlined the Initial

integration and proofs of concept plan, and in this deliverable, we follow this up with a detailed report on the

progress towards these integration goals. As such, the core objective of this deliverable is to present the current

state of the component integration. This document gives a detailed overview of how the components are

integrated into each UC, in terms of interface points and interaction flows. It also gives a detailed technical

description of the implementation of each of the CECCM components, which gives a clear sense of the level of

work that has been carried out to date.

As discussed in D5.1, the approach taken has been to align the integration activities with the UCs and to use

these as drivers for selection, implementation, and evaluation of the relevant parts of the AC3 architecture. This

gives the integration a clear focus and direction, while also delivering component integrations that present the

most value towards the core goals of that UC.

2.2 Link with other project activities

This deliverable is a continuation from [1] D5.1 “Initial integration and proofs of concept plan”, and provides

insights into the partial developments, integrations, and proof of concept activities related to Task T5.1. The work

done in the UC adheres to the requirements defined in D2.4, “Business Analysis of CECC and Use Case

Requirements” [2]. Regarding the data management mechanism, D3.3, “Initial Report on Data Management for

Applications in CECC” [3], provides direct feedback for the design of the overall system and its interface with AC3

service deployment and management mechanisms. D4.1, “Initial Report on Mechanisms that Enable Green-

Oriented Zero Touch Management of CECC Resources” [4], informs the work on resource discovery and

monitoring, AI/ML models for resource management, green-oriented LCM decisions for resource management,

and networking programmability of CECC. D3.1, “Initial report on the Application LCM in the CEC” [5], navigates

through the various components related to the user plane of the CECCM, namely the User Interfaces, Application

Profiles, Ontology Modeling Tools and Application Descriptor Models. Moreover, D2.3 “Report on technological

tools for CECC” [6] provides a comprehensive overview of the technological tools, laying the groundwork for their

integration within the AC³ framework. The careful selection and analysis of these tools in D2.3 was a crucial initial

step toward ensuring a smoother integration process in subsequent work packages. Finally, D2.1 “CECC

framework and CECCM” [1] provides the architecture framework for all UC.

2.3 Mapping AC3 Outputs

The purpose of this section is to map AC3 Grant Agreement commitments, both within the formal Deliverable

and Task description, against the project’s respective outputs and work performed.

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions

AC3 GA
Component

Title

AC3 GA Component
Outline

Respective Document
Chapter(s)

Justification

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 11

DELIVERABLE

D5.2 Report on Integration of the CECCM:

“Report on the implementation of the CECCM and integration of components.”

TASKS

Task T5.1: AC3
components
integration

“Each partner involved will
develop their individual
components and/or
functions and show their
project results based on
the tests done in their labs,
where all essential
functions can be tested.”

Sections 3.3, 3.4, 4.3,
4.4, 5.3, 5.4

For each UC, the “Component
Integration Design” section
describes how and which AC3
components are leveraged by the
CECCM software to support the
respective UC, while the
“Component Integration Status”
sections detail the progress of
integrating these components to
enable that support.

Task T5.2:
Testbed
integration

“This task will concern the
integration of the software
and hardware needed to
run the three UCs.”

Sections 3.2, 4.2, 5.2

The “Use Case Architecture”
section of each UC describes the
core infrastructure set up by
project partners to deploy
applications and AC3 components
for the respective UC.

Task T5.3: Field
trials execution

In this task, the evaluation
of the solutions proposed
in WP3/4 will be
performed through
simulation and
experimentation of the
three PoC.

Sections 3.5, 4.5, 5.5

For each UC, the “Results” section
demonstrates how the
experimentations and simulations
can validate that the AC3
components and CECCM software
meet the KPIs and metrics
required by the respective UC
applications.

2.4 Deliverable Overview and Report Structure

Sections 3, 4, and 5: UC1, UC2, and UC3

Sections 3, 4, and 5 describe the implementation and integration efforts for UC1 (IoT and Data), UC2 (Smart

Monitoring System using UAVs), and UC3 (Processing TBs of Astronomy Data), respectively. While the UCs are

separated for clarity, all three sections share a common internal structure to ensure consistency, as follows:

• Use Case Description and Objectives: Provides an overview of the UC goals and core functionalities (e.g.,

optimizing building operations for UC1, enhancing urban surveillance for UC2, processing astronomical

data for UC3), setting the stage for the integration work.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 12

• Use Case Architecture: This subsection details the architecture of the UC, including the application

design and testbed setup, highlighting how they support the UC objectives within the AC3 framework.

• Component Integration Design: Explains the design of CECCM component integration for the UC,

detailing how components (e.g., EDC Connectors, LiSO, Maestro, OSR) interact with the UC to enhance

functionality and performance.

• Component Integration Status: Offers a detailed technical update on the implementation status of each

integrated CECCM component, including progress on data management, orchestration, and monitoring

systems.

• Results: Presents any initial results from the integration efforts, such as experimental outcomes or

system performance metrics, where available, with further details deferred to future deliverables.

Section 6: Conclusions

This section summarizes the deliverable key findings, emphasizing the collaborative work between UC and

component owners. It reaffirms the progress toward the AC3 vision and outlines the next steps for achieving

tangible benefits through demonstrations and experimentation.

Section 7: References

This section lists all external sources, including project deliverables and relevant scientific publications, that

provide foundational context, data, or methodologies cited within the deliverable. This ensures transparency

and enables readers to access original source material for further information.

Section 8: Annex

This section provides a complete view of the application descriptors that can be generated by the OSR for each

of the UCs, detailing the microservices, dependencies, and group affinities for each.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 13

3 UC1
3.1 Use Case Description

UC1 introduces an innovative IoT-based, smart sensing and monitoring framework designed to leverage the

transformative potential of edge AI technologies within a Cloud Edge Computing Continuum (CECC)

infrastructure. It aims to enhance the monitoring and management of infrastructures ranging from individual

smart homes to expansive smart grids on a national scale, regardless of the underlying technologies for data

collection and data communication. In this context, UC1 is engineered to integrate physical and digital realms

more seamlessly than ever, thereby managing and processing a significantly larger volume of IoT data to enable

timely decisions and responsive actions based on sensed conditions. It also focuses on data fusion, integrating

outputs from diverse sensors to create detailed profiles and detect patterns that help in proactively managing

events and minimizing their impact on infrastructure operations. This advanced functionality not only supports

basic applications like air quality monitoring but also intends to enable immediate, localized decision-making

through a blend of IoT innovation and edge computing intelligence.

3.1.1 Objectives

UC1 is set to showcase the remarkable capabilities of the CECCM, with a keen focus on several ambitious

objectives that highlight its potential:

• Intuitive application definition: Leveraging an intuitive GUI and Ontology and Semantic aware Reasoner

(OSR), the application developer can efficiently define and deploy microservice applications within the

CECCM framework. This system will simplify the user experience, making it easier to harness cutting-

edge technology, including cloud and edge domains and AI/ML capabilities. Moreover, the system

includes several essential components that are integral to data management: Catalogues, which provide

descriptions for available data sources; Data Provider Connector, offering access to the data made

available; Data Consumer Connector, which initiates the streaming of data from the source to the

application microservices; Data Mappers, responsible for transforming incoming data as needed; Data

Manipulator, which handles the core application logic; and a Message Broker, responsible for

transferring data between the various application components, ensuring smooth communication and

synchronization throughout the system.

• Automatic Deployment and Zero-Touch Management: UC1 will demonstrate the robust Life-Cycle

Management (LCM) capabilities of the CECCM developed in AC3, enabling the automatic deployment,

monitoring, and maintenance of microservice applications. Using AI and ML-driven zero-touch

management algorithms, the system can autonomously optimise and sustain application performance.

• Microservice Deployment and Migration: The CECCM’s resilience will be further highlighted by its ability

to deploy and manage microservices across cloud-edge environments. Should the application in an edge

deployment become unavailable or face resource limitations, the system can automatically migrate

services to alternative cloud infrastructures, ensuring uninterrupted service delivery and continuity.

• Data Analysis and Decision-Making for Smart Building Installations: By leveraging AI and ML techniques,

the system will enable real-time analysis for the environmental and human presence detection data. This

real-time data analysis will contribute to enhanced building monitoring for actionable insights and

facilitate AI-based decision-making.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 14

3.1.2 UC1 Stakeholders

3.1.2.1 End Users / Smart Building Operators

The primary beneficiaries of the deployed UC1 application are the building operators (in our case, the operators

of the IQU facility). They rely on the system's real-time insights to monitor and manage indoor environmental

conditions such as CO₂ levels, temperature, and humidity in conjunction with human presence information. By

leveraging these insights, they ensure occupant safety, comfort, and well-being by adapting the building's air

circulation, heating, or cooling. Through real-time alerts, analytics dashboards, and historical data trends, they

can make informed decisions or even trigger proactive maintenance and improved environmental management

practices to ensure the best and most cost-effective measures are taken.

Although building occupants do not interact directly with the system, they also benefit from AI-assisted

automation and decision-making that optimize their surroundings and allow them to access limited information

about their workplace.

3.1.2.2 Application/Software Developers

The Application and DevOps teams are responsible for designing, implementing, and deploying the microservices

that comprise the UC1 application. These include modules for data ingestion from IoT sensors, data

preprocessing, ML-based inference (e.g., room occupancy prediction), and real-time alerting mechanisms. They

also train the ML model needed based on real-world data available in the AC3 Data Catalogue.

The DevOps team also handles these services' packaging, deployment, and lifecycle automation using the

CECCM. By integrating the AC3 components, they benefit from intuitive and efficient automated deployment,

monitoring, maintenance, and migration of microservices between the edge and cloud domains to maintain

performance. This significantly reduces operational overhead and simplifies the management of AI-powered

microservices in an edge environment.

3.1.2.3 Infrastructure Provider / CECCM Integrator

They are responsible for deploying and maintaining the edge and cloud computing environments. This includes:

• Provisioning and configuring physical hardware (IoT sensors, data collectors nodes, and servers)

• Deploying the Kubernetes (K8s)-based Local Management System (LMS) in the computing domains

• Integrating the CECCM components (including LiSO for LCM, LMS, GUI, OSR, algorithms developed as

enablers, and so on)

The infrastructure provider ensures that the CECCM is available and operational to support the DevOps and

Application teams during application deployment and runtime. They also handle the secure communication and

synchronization between data sources, edge, and cloud domains.

3.2 Use Case Architecture

3.2.1 Use Case Application

The UC1 application centres on developing an IoT-enabled system for monitoring and optimizing building

operations in real time. By deploying a network of sensors throughout a building environment, the system

continuously gathers data on energy consumption, indoor environmental conditions such as temperature,

humidity, and CO₂ levels, as well as occupancy patterns and equipment performance. This rich stream of data

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 15

provides the foundation for intelligent analysis that supports energy-efficient operation, improved indoor

comfort, and predictive maintenance strategies.

The application demonstrates how buildings can evolve into smart, responsive infrastructures by leveraging IoT

technologies to make informed decisions automatically or with minimal human intervention. To enable this, the

system is built on a robust data infrastructure that supports real-time processing, semantic interoperability

across heterogeneous devices, secure and privacy-compliant data sharing, and scalable analytics. Through this

approach, we illustrate how IoT-based monitoring can drive sustainability, reduce operational costs, and

contribute to the transformation of traditional buildings into intelligent, adaptive spaces that actively participate

in wider smart city and digital twin ecosystems.

The core of the application is split into two parts, data input and data processing. The first part is responsible for

the continuous acquisition and integration of data generated by the building’s IoT infrastructure. A diverse

network of sensors is deployed across the building to monitor environmental conditions (such as temperature,

humidity, and air quality, etc.). The system ingests high-frequency data streams from these sources through the

AC3 data management, handling issues of heterogeneity and interoperability across different sensor types and

communication protocols. It ensures reliable data collection through real-time or near-real-time pipelines built

using the AC3 data management addons. This lays the groundwork for intelligent processing by maintaining an

up-to-date and structured view of the building’s operational context.

Building upon the data collected from the IoT infrastructure, the second part of the application focuses on

advanced data analysis using machine learning models. This includes both unsupervised and supervised learning

techniques tailored for detecting anomalies in the building’s behaviour and forecasting future conditions.

Anomaly detection models are trained to identify deviations from typical patterns, which may indicate sensor

faults, equipment failures, or unusual usage behaviours. In parallel, forecasting models predict key variables such

as energy consumption, temperature evolution, or occupancy trends, enabling proactive management

strategies. These insights can be used to optimize energy use, schedule maintenance, and enhance user comfort,

ultimately supporting data-driven decision-making in building operations.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 16

Figure 1 - Dashboard showing sensor readings, processing speed, and machine learning statistics in real time.

Figure 1 shows a dashboard view where the users can review the conditions reported by a specific sensing device.

This data includes metrics for both the actual values coming from the sensors and metrics regarding the

processing speed during the first part of the application, as well as the statistics during the application of the

machine learning models on the received data. These metrics are primarily collected and used inside the UC1

application to evaluate its performance and its operation.

3.2.2 UC Testbed – Hardware and Software

The broad UC1 testbed integrates IoT, edge computing, and cloud technologies, which are detailed in the

following section, as illustrated in Figure 2:

Edge Domain: An edge server hosting a K8s cluster forms the edge domain, optimizing resource management

for the UC1 AC3 application. This setup allows for data processing close to the source, minimizing communication

costs and latency. However, high IoT traffic can lead to increased processing times beyond the specified SLAs.

Cloud Domain: UC1 utilizes a K8s cluster hosted by ION for cloud services, facilitating service migration in AC3.

This cloud environment can manage significant data volumes, handling peaks by transferring processing from

the edge to the cloud, which may increase latency but ensures compliance with SLAs. Performance monitoring

tools like Prometheus and Grafana are hosted here for data visualization and analysis.

Data Source Domain: This domain is focused on real-time IoT data collection and transmission, utilizing:

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 17

• IoT Sensors: The IQU building is equipped with Sensirion SCD41 CO2 sensors and Shelly Motion 2 devices

for monitoring.

• Raspberry Pi4 & Pi5 Devices: These compact, cost-effective single-board computers run software for

managing sensor data and provide 5G connectivity via SIM8200EA-M2 5G HATs or Wi-Fi as an alternative.

Figure 2. Depiction of the UC1 Data Source, Edge and Cloud Domains and the flow of data between them.

3.2.2.1 Data Source Testbed

The UC1 data source is based on an IoT deployment in the IQU offices that represents the IoT infrastructure to

be used for UC1. Figure 3 depicts the setup within an office environment, covering multiple rooms including a

Meeting Room, R&D Room, W&D Room, and a Kitchen. The testbed integrates various IoT devices and sensors

across these spaces to enable real-time monitoring, automation, and data-driven insights. Throughout the office,

multiple environmental sensors are deployed, positioned strategically in key locations such as workspaces,

restrooms, and common areas. These sensors measure parameters such as temperature, humidity, air quality

(as CO2 concentration), and occupancy, providing a comprehensive dataset for the analysis of the conditions

inside the office building, the goal of the AC3 UC1 application. Alongside the sensors, the testbed incorporates

Raspberry Pi devices, which serve as data collection nodes. These devices are present in each room to facilitate

data aggregation. The primary objectives of this IoT testbed include environmental monitoring, where real-time

tracking of air quality and climate conditions provides insights for occupancy, energy optimization, and indoor

comfort. The inclusion of edge computing capabilities to be presented in the next subsection enables edge

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 18

processing of IoT data before transmission to a central system, enhancing responsiveness and reducing network

congestion.

This IoT testbed represents a scalable and modular framework suitable for smart office applications, energy

efficiency research, and workplace analytics. By leveraging a combination of environmental sensors, edge

computing, and smart automation technologies, it provides a robust infrastructure for studying and optimizing

office environments.

Figure 3. The IQU Offices IoT Data Source Domain that represents the IoT infrastructure of UC1.

3.2.2.2 Edge Compute Testbed

The Edge Compute Testbed for UC1 is hosted at IQU’s facilities and is designed to execute low-latency data

processing using edge AI capabilities. It supports the deployment of UC1’s microservice-based applications and

AC3 components through a K8s-based LMS.

K8s Cluster Configuration

The edge domain is structured as a K8s cluster with one master and three worker nodes as defined in Table 2.

All nodes operate over a secure WireGuard overlay network for inter-node communication and connectivity with

the data source domain.

Table 2: UC1 Edge K8s Cluster Details

Node Role Hostname CPU Cores Memory Status

Master Node ac3-master-vm Intel Xeon
Gold 5218

16 192 GB DDR4 Running

Worker

Node #1

ac3-node-1-vm Intel Xeon
Gold 5218

16 192 GB DDR4 Running

Worker

Node #2

ac3-node-2-vm

Intel Xeon
Gold 5218

16 192 GB DDR4 Running

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 19

Worker

Node #3

ac3-node-3-vm

Intel Xeon
Gold 5218

16 192 GB DDR4 Running

All nodes are deployed on a high-performance bare-metal server (S1) that was defined in D4.2 [2], section 5.1.4,

and benefit from centralized storage via a ZFS-backed 2TB NVMe SSD for high-throughput data access. A second

server (S2) specified in D4.2 [2] is also available in case more nodes need to be added to the cluster. It features

an Intel i9-10900L CPU (10 cores / 20 threads) and a 2 TB NVMe SSD.

LMS and Cluster Software Stack

The edge domain LMS is powered by K8s, and the software stack includes:

• K8s Version: v1.30.10

• Container Runtime: containerd

• Container Network Interface: Calico

• Overlay Network: WireGuard (for secure inter-node communication)

• Internal Monitoring Stack: Prometheus + Grafana (deployed on both edge and cloud domains)

• Security: TLS encryption with Role-Based Access Control (RBAC) enforcement for K8s API access.

This setup ensures that all edge domain services in UC1, such as microservices for sensor ingestion, ML model

inference, and messaging, can be deployed and monitored.

Network Setup:

Figure 4 depicts the external-access architecture for the edge K8s cluster, where port forwarding securely

exposes the K8s API server. Port 6443 is forwarded to the master node at 10.0.0.8:6443, enabling external access

via IQU’s domain (dev.iquadrat.com:6443). RBAC enforces fine-grained permissions, and TLS certificates ensure

all communication is encrypted and authenticated.

Figure 4. Exposed Endpoints of the K8s Cluster API

Furthermore, this configuration strengthens security and facilitates seamless integration and secure data

exchange between the data source domain and the edge domain. This enhancement is made possible by the

incorporation of the Raspberry Pi devices into the WireGuard overlay, which enables effective communication

between these domains.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 20

Figure 5. Architecture for Exposing the K8s API Server Through Domain-Level Port Forwarding

3.2.2.3 Cloud Compute Testbed

The Cloud Compute Testbed of UC1 operates using the same software tools as the Edge Compute Testbed. The

computing infrastructure used is provided by IONOS as a virtual K8s deployment on its cloud resources to provide

more computing capabilities than the edge location.

3.3 Component Integration Design

Multiple components developed in AC3 are integrated with the UC1 application to facilitate the demonstration

of the AC3 features used, and their integration is depicted in Figure 6. In more detail:

1. The data source of UC1 is registered in the AC3 Catalogue, and the EDC Connectors are used to retrieve

the data from it (presented in green colour).

2. The application’s resource usage metrics are exposed to the monitoring framework via the Prometheus

collectors deployed (light yellow colour blocks) in both edge and cloud locations. These metrics will be

used to train the ML models for the application profiling and migration to implement the intelligent

Lifecycle Management.

1. The UC1 application specific components (RabbitMQ, Mapper, ML and UI) are presented in orange colour

and can be deployed either at the edge or cloud locations available. In the role of LCM, we have used

LiSO from EUR. LiSO, which is described in D2.3 [6], is responsible for the deployment of the application

as well as enforcing application runtime decisions based on the AI model recommendations based on

the Application Descriptor (AppD) that is generated by the OSR.

3. The computation LMS used in our UC is K8s.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 21

Figure 6. UC1 / AC3 component integration

The UC1 application definition and deployment are outlined in Figure 7. The process begins with the definition

of the application services and the data needed through the AC3 GUI. The user can either retrieve and use services

that are already defined in the Service Catalogue or define new services that are to be stored in the Service

Catalogue to be re-used later on from other applications. The GUI also sends the application details to the App

Gateway that will forward a request to the OSR in order to build a combined AppD that includes both the services

of the application, as well as the datasets to be used and the data management application addons that are

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 22

needed for the application to work. The merged AppD will then be sent to the LCM and to the UC1 Testbed’s

LMS for the final deployment.

Figure 7. UC1 application definition and deployment

The UC1 data processing workflow diagram is illustrated in Figure 8. IoT data updates are generated from the IoT

Sensors and sent to the provider EDC Connector. The data transfer is initiated by the consumer EDC Connector

with a process that will be further defined in Section 3.4.3. After this process is complete, the provider EDC

Connector starts to forward Sensor Data updates to the Logger deployed as part of the UC1 application. The

Logger then forwards them to the RabbitMQ broker, also deployed by UC1. From there, each data point is

“mapped” from a dedicated service to an internal data triple that is then distributed to the data analysis

components of our application (ML-1 for anomaly detection and ML-2 for value forecasting). The results from

each ML model are again published to the RabbitMQ server as an analysis result. These results, as well as the

original data, are also forwarded to and displayed in the UC1 UI (based on Grafana) to be made available to our

application’s users.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 23

Figure 8. UC1 Data Processing Pipeline

3.4 Component Integration Status

3.4.1 Data Management and Connectors

The dataset of UC1 described in Figure 9Figure 9: UC1 Dataset consists of the data streams originating from the
IQU testbed. It is registered in the catalogue following the Gaia-X principles for data sharing and interoperability,
providing all the needed information about its data and its characteristics. It is also providing the asset ID “uc1-
stream”. This id is used through a dedicated data endpoint at http://ds.uc1.ac3.sparkworks.net:18182/protocol,
using the "dspaceconnector" protocol for communication to get access to the stream of data.

To access and utilize the dataset, specific services and connectors are required, as listed in the ACᶾ catalogue

(they will be described in the next subsection):

• A required connector is linked, which serves as an intermediary for secure data exchange.

• Additional service offerings are also linked, ensuring that the dataset can be processed, analysed, and

integrated in our application.

The dataset is governed by the BSD-3-Clause license, which allows for redistribution and modification with

minimal restrictions, making it suitable for both academic and commercial applications. Two contact points are

also available for additional information and requests from the two consortium members that curate the data

source.

@prefix dc: <http://purl.org/dc/terms/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix ns0: <https://ac3-project.eu/#> .
@prefix ns1: <https://schema.org/> .
@prefix ns2: <https://w3id.org/gaia-x/development#> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 24

<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-e2354baae959>
 a <https://w3id.org/gaia-x/development#Dataset> ;
 dc:title "UC1 Dataset 1"@en ;
 geo:lat 41.3976242 ;
 geo:long 2.1560832 ;
 dcat:assetId "uc1-stream" ;
 dcat:contactPoint <https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-
4e5d-a216-e2354baae959/Contact1>, <https://catalogue.ac3-
project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-e2354baae959/Contact2> ;
 dcat:endpointDescription "dspaceconnector" ;
 dcat:endpointURL "http://ds.uc1.ac3.sparkworks.net:18182/protocol" ;
 ns0:requiredConnector <https://catalogue.ac3-project.eu/set/resource/service/10333e33-
0875-4869-9f15-7fc7fccd1d48> ;
 ns0:requiredServiceOffering <https://catalogue.ac3-
project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fb3>,
<https://catalogue.ac3-project.eu/set/resource/service/5b6372e6-11a0-47dc-8b1c-
761ff81cba25>, <https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-
9518-efb9f55d3f73> ;
 ns1:description "These data are used in the UC1 of the AC3 project. UC1 focuses on
processing and analysing streams of data originating from environmental sensors installed
inside office or residential buildings." ;
 ns1:name "IQU UC1 IoT Data 1" ;
 ns2:license "BSD-3-Clause" .

<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-
e2354baae959/Contact1>
 a vcard:Kind ;
 vcard:fn "Iquadrat Informatica S.L." ;
 vcard:hasEmail <mailto:j.ojeda@iquadrat.com> ;
 vcard:hasName "Jhofre Ojeda" .

<https://catalogue.ac3-project.eu/set/resource/dataset/2befff01-885e-4e5d-a216-
e2354baae959/Contact2>
 a vcard:Kind ;
 vcard:fn "Spark Works Ltd." ;
 vcard:hasEmail <mailto:tsaradakos@sparkworks.net> ;
 vcard:hasName "Themistoklis Sarantakos" .

Figure 9: UC1 Dataset

3.4.2 Service Catalogue

In the AC3 Service Catalogue, we have defined a number of services that are designed to retrieve and process the

data generated by the data source of UC1. These are the:

• UC1 Connector, based on the EDC Connector,

• UC1 Logger for incoming data to receive new IoT measurements,

• UC1 Data Mapper to prepare IoT measurements for processing by the IoT application.

In the rest of this Section, we will present the descriptions of these services and justify their properties.

Starting with the UC1 Connector, presented in Figure 10, we have the definition of a service based on the

“sparkworks/ac3-connector-http-http-consumer:latest” docker image published in the official Docker Hub. This

application needs a set of environmental variables to be configured and executed, as well as needs to expose a

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 25

set of TCP ports to facilitate communication with the data provider Connector. Regarding the environmental

variables, it needs to get access to the following data:

• Ports to be used for the loaded services. These ports are provided as numerical values.

• PROVIDER_DOMAIN: Domain of the data source provider where the connector should send its requests

to. This domain is provided as a value that the OSR will replace when building the application’s descriptor.

• ASSET_NAME: The name of the asset to be requested from the data source connector. This value is

provided as a value that the OSR will replace when building the application’s descriptor.

• CONSUMER_DOMAIN: The domain where this application will be launched and become accessible on

the public internet. This domain is provided as a value that the OSR will replace when building the

application’s descriptor.

Additionally, in the service’s description we include a set of resource limits that are to be used when launching

the service to make sure that the application will fit in the resources available in the deployment environment.

The resource limits include CPU, Memory and GPU requirements and are based on the Gaia-X ontology’s

ContainerResourceLimits. Similarly, an SLA entity is added to define SLAs for the service that AC3 should apply.

These values include serviceAvailability, maxResponseTime and dataThroughput.

@prefix dc: <http://purl.org/dc/terms/> .
@prefix ns0: <https://ac3-project.eu/#> .
@prefix ns1: <https://schema.org/> .
@prefix ns2: <https://w3id.org/gaia-x/development#> .

<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-7fc7fccd1d48>
 a <https://w3id.org/gaia-x/development#ServiceOffering> ;
 dc:title "Streaming IoT Connector" ;
 ns0:EnvironmentVariable "WEB_HTTP_MANAGEMENT_PORT=28181", "WEB_HTTP_PORT=28180",
"WEB_HTTP_PROTOCOL_PORT=28182", "WEB_BASE_URL=http://192.168.1.215",
"WEB_HTTP_CONTROL_PORT=28183", "ASSET_NAME=@dcat:assetId",
"PROVIDER_DOMAIN=@dcat:endpointURL", "CONSUMER_DOMAIN=@self-ip" ;
 ns0:ExposedPort "28180:28180", "28181:28181", "28182:28182", "28183:28183" ;
 ns0:image "sparkworks/ac3-connector-http-http-consumer:latest" ;
 ns1:description "This is an edc connector for streaming iot data" ;
 ns1:name "streaming-connector" .

<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-
7fc7fccd1d48/resourceLimits>
 a <https://w3id.org/gaia-x/development#ContainerResourceLimits> ;
 ns2:cpuRequirements 0.5 ;
 ns2:memoryRequirements 512 ;
 ns2:gpuRequirements 0 .

<https://catalogue.ac3-project.eu/set/resource/service/10333e33-0875-4869-9f15-
7fc7fccd1d48/sla>
 a ns0:microservicesSLA ;
 ns0:serviceAvailability 99.9 ;
 ns0:maxResponseTime "Medium" ;
 ns0:dataThroughput "High" .

Figure 10. UC1 Connector

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 26

The UC1 Logger (Figure 11) is based on the “sparkworks/ac3-amqp-http-request-logger:latest” Docker image,

which is published in Docker Hub. This application requires minimal configuration, primarily setting up network

ports for communication. Additionally, in the service’s description, we include a set of resource limits that are to

be used when launching the service to make sure that the application will fit in the resources available in the

deployment environment. The resource limits include CPU, Memory, and GPU requirements and are based on

the Gaia-X ontology’s ContainerResourceLimits. Similarly, an SLA entity is added to define SLAs for the service

that AC3 should apply. These values include serviceAvailability, maxResponseTime and dataThroughput.

@prefix dc: <http://purl.org/dc/terms/> .
@prefix ns0: <https://ac3-project.eu/#> .
@prefix ns1: <https://schema.org/> .
@prefix ns2: <https://w3id.org/gaia-x/development#> .

<https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fb3>
 a <https://w3id.org/gaia-x/development#ServiceOffering> ;
 dc:title "Streaming IoT Logger" ;
 ns0:EnvironmentVariable "HTTP_SERVER_PORT=4000" ;
 ns0:ExposedPort "4000:4000" ;
 ns0:image "sparkworks/ac3-amqp-http-request-logger:latest" ;
 ns1:description "This is a receiver for streaming iot data" ;
 ns2:ContainerResourceLimits <https://catalogue.ac3-
project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-d4a229736fb3/resourceLimits> ;
 ns0:microservicesSLA <https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-
48ec-90cd-d4a229736fb3/sla> ;
 ns1:name "streaming-logger" .

<https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-
d4a229736fb3/resourceLimits>
 a ns2:ContainerResourceLimits ;
 ns2:cpuRequirements 1 ;
 ns2:memoryRequirements 1024 ;
 ns2:gpuRequirements 0 .

<https://catalogue.ac3-project.eu/set/resource/service/d8a6b514-3b80-48ec-90cd-
d4a229736fb3/sla>
 a ns0:microservicesSLA ;
 ns0:serviceAvailability 99.9 ;
 ns0:maxResponseTime "Medium" ;
 ns0:dataThroughput "High" .

Figure 11. UC1 Logger

For the UC1 mapper (Figure 12), we define a service based on the “sparkworks/sw-mapper-ac3:0.5” Docker

image, published in the official Docker Hub. This application requires a set of environmental variables to be

configured and executed, as well as the exposure of a set of TCP ports to facilitate communication with the

message broker and other services. Regarding environmental variables, the service requires the following data:

• RABBITMQ_HOST: Specifies the RabbitMQ message broker host.

• RABBITMQ_PORT: Defines the port for RabbitMQ communication.

• RABBITMQ_USERNAME: Username used for authentication.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 27

• RABBITMQ_PASSWORD: Password for authentication.

• QUEUE_IN: The input queue name where incoming data is received.

• QUEUE_OUT: The output queue name where mapped data is sent.

Additionally, in the service’s description we include a set of resource limits that are to be used when launching

the service to make sure that the application will fit in the resources available in the deployment environment.

The resource limits include CPU, Memory and GPU requirements and are based on the Gaia-X ontology’s

ContainerResourceLimits. Similarly, an SLA entity is added to define SLAs for the service that AC3 should apply.

These values include serviceAvailability, maxResponseTime and dataThroughput.

@prefix dc: <http://purl.org/dc/terms/> .
@prefix ns0: <https://ac3-project.eu/#> .
@prefix ns1: <https://schema.org/> .
@prefix ns2: <https://w3id.org/gaia-x/development#> .

<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73>
 a <https://w3id.org/gaia-x/development#ServiceOffering> ;
 dc:title "Mapper Service" ;
 ns0:EnvironmentVariable "RABBITMQ_HOST=edgebroker", "RABBITMQ_PASSWORD=xyzpass",
"RABBITMQ_USERNAME=mapperuc1", "RABBITMQ_PORT=5672", "QUEUE_OUT=mapperuc1.mapped",
"QUEUE_IN=mapperuc1.data" ;
 ns0:ExposedPort "5026:5026", "8026:8026" ;
 ns0:image "sparkworks/sw-mapper-ac3:0.5" ;
 ns1:description "This is a mapper service for live IoT data." ;
 ns1:name "edgemapper" .

<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73/resourceLimits>
 a <https://w3id.org/gaia-x/development#ContainerResourceLimits> ;
 ns2:cpuRequirements 0.5 ;
 ns2:memoryRequirements 512 ;
 ns2:gpuRequirements 0 .

<https://catalogue.ac3-project.eu/set/resource/service/115f7472-194d-446c-9518-
efb9f55d3f73/sla>
 a ns0:microservicesSLA ;
 ns0:serviceAvailability 99.9 ;
 ns0:maxResponseTime "Medium" ;
 ns0:dataThroughput "High" .

Figure 12. UC1 Mapper

3.4.3 Data Source Deployment

The Data Source of UC1 is interfaced with AC3 using an EDC Connector developed based on the Eclipse EDC
connector samples. This provider connector is deployed as a containerized application at the testbed’s
infrastructure and is interfaced with the locally running MQTT broker that aggregates the data generated by the
IoT devices. Once the connector is deployed, a new asset is registered using a set of parameters that define the
source of the incoming IoT updates (MQTT server host, port, username, password, and topic), and the ID of the
asset that will be used for this source. This can be accessed then through the provider’s management API:

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 28

{
 "@context": {"@vocab": https://w3id.org/edc/v0.0.1/ns/},
 "@id": "uc1-stream",
 "properties": {
 "name": "iot-data",
 "type": "streaming",
 }
}

A policy must then be defined on the provider side to govern access to UC1 data. A JSON payload is used to
define a policy that permits the usage of the asset:

{
 "@context": {
 "edc": "https://w3id.org/edc/v0.0.1/ns/",
 "odrl": "http://www.w3.org/ns/odrl/2/"
 },
 "@id": "no-constraint--1",
 "policy": {
 "@type": "odrl:Set",
 "odrl:assigner": {
 "@id": "provider"
 },
 "odrl:target": {
 "@id": "asset-1"
 },
 "odrl:permission": [],
 "odrl:prohibition": [],
 "odrl:obligation": []
 }
}

Next, a contract definition is created to govern the data transfer. A JSON payload is used to define the contract
terms, linking the asset to a policy that permits access:

{
 "@context": {
 "edc": "https://w3id.org/edc/v0.0.1/ns/"
 },
 "@id": "contract-definition",
 "accessPolicyId": "no-constraint-policy",
 "contractPolicyId": "no-constraint-policy"

 }

The consumer connector then needs to initiate the negotiation of the data transfer to the UC1 AC3 application.

This is achieved using a request payload for the specific asset:

{
 "@context": {
 "@vocab": "https://w3id.org/edc/v0.0.1/ns/",
 "odrl": "http://www.w3.org/ns/odrl/2/"
 },
 "@type": "NegotiationInitiateRequest",
 "counterPartyAddress": "http://ds.uc1.ac3.sparkworks.net:8282/protocol",

https://w3id.org/edc/v0.0.1/ns/
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
https://w3id.org/edc/v0.0.1/ns/
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://ds.uc1.ac3.sparkworks.net:8282/protocol

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 29

 "protocol": "dataspace-protocol-http",
 "offer": {
 "offerId": "..."
 },
 "policy": {
 "@id": "",
 "@type": "odrl:Offer",
 "odrl:assigner": {"@id": "provider"},
 "odrl:target": {"@id": "uc1-stream"},
 "odrl:permission": [],
 "odrl:prohibition": [],
 "odrl:obligation": []
 }
}

Once the negotiation is finalized (status FINALIZED), the response provides a contract agreement ID, which is

used to initiate the data transfer. A JSON payload is used to initiate the data transfer through the consumer’s

management API:

{
 "@context": {
 "edc": "https://w3id.org/edc/v0.0.1/ns/"
 },
 "@type": "TransferRequest",
 "connectorId": "provider",
 "counterPartyAddress": "http://ds.uc1.ac3.sparkworks.net:8282/protocol",
 "protocol": "dataspace-protocol-http",
 "contractId": "...",
 "assetId": "uc1-stream",
 "transferType": "HttpData-PUSH",
 "dataDestination": {
 "type": "HttpData",
 "baseUrl": "http://ionos-s1.sparkworks.net:4000"
 }
}

Once the transfer process is initiated, the data starts flowing to the baseUrl provided in the request noted above.

The logger application that is executed there is capable of decoding the received data and forwarding it to the

AC3 application for further processing.

3.4.4 Application Descriptor – OSR

The Graphical User Interface (GUI) and Ontology Semantic Reasoner (OSR) have been successfully integrated to

support the definition, composition, and deployment of applications within UC1. This integration allows

developers to define their application requirements through a structured and intuitive GUI, while the OSR

automates the translation of these inputs into a machine-readable YAML-based AppD. This mechanism ensures

that the required configurations, inter-service dependencies, and deployment parameters are correctly

structured and semantically validated.

The snippets below present a high-level structure of the AppD, which includes metadata, microservices

configuration, network interconnections, global SLA requirements, and deployment constraints. This structure is

generated automatically based on the user input, ensuring both flexibility and compliance with deployment

expectations.

https://w3id.org/edc/v0.0.1/ns/
http://ds.uc1.ac3.sparkworks.net:8282/protocol

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 30

To demonstrate how microservices are defined in practice, the code snippets below provide an example
microservice from UC1, detailing its resource requirements, environment variables, SLA targets, and port
mappings. This structure ensures that each service is configured accurately to match deployment conditions,
including location-specific constraints (e.g., edge or cloud).

In scenarios where data sources are involved, like UC1, the OSR queries the Piveau catalogue to fetch relevant

services and connectors. The following snippets illustrate an example of a microservice automatically extracted

from Piveau. These data-related services are appended to the descriptor to ensure the application can access

and process data as expected.

This end-to-end flow streamlines the deployment process across the Cloud-Edge Continuum (CECC), reducing

manual overhead while supporting flexible, scalable application design.

ApplicationName: "UC1 IoT Data Processing"
Version: "3.0"

Microservices_configuration:

Global_SLA:

ServiceAvailability: "99.9%"
MaxLatency: "500 ms"
MaxResponseTime: "Low"
DataThroughput: "High"

Microservices_configuration:

MicroserviceName: "edgeapplication"
Version: "0.4"
Image: "sparkworks/data_manipulator_uc1:0.4"
ID: "edgeapplication"
ResourceRequirements:

Cpu: "4 vCPUs"
Memory: "8Gi"

ReplicaCount: "1"
Ports:

"5001:5001"
EnvironmentVariables:

Name: "RABBITMQ_PORT" Value: "5672"
Name: "RABBITMQ_HOST" Value: "edgebroker"
Name: "RABBITMQ_USERNAME" Value: "m1"
Name: "RABBITMQ_PASSWORD" Value: "7Iqk7uu1Ot"
Name: "QUEUE_OUT" Value: "mapperuc1.processed.ml"
Name: "QUEUE_IN" Value: "mapperuc1.mapped.ml"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 31

Microservices_configuration:

- MicroserviceName: "consumer"
 Version: "latest"
 Image: "sparkworks/ac3-connector-http-http-consumer:latest"
 ID: "consumer"
 Ports:
 - "28180:28180"
 - "28181:28181"
 - "28182:28182"
 - "28183:28183"
 EnvironmentVariables:
 - Name: "WEB_BASE_URL"
 Value: "http://ionos-s1.sparkworks.net"
 - Name: "WEB_HTTP_PORT"
 Value: "28180"
 - Name: "WEB_HTTP_MANAGEMENT_PORT"
 Value: "28181"
 - Name: "WEB_HTTP_PROTOCOL_PORT"
 Value: "28182"
 - Name: "WEB_HTTP_CONTROL_PORT"
 Value: "28183"
 - Name: "ASSET_NAME"
 Value: "uc1-stream"
 - Name: "PROVIDER_DOMAIN"
 Value: http://ds.uc1.ac3.sparkworks.net:18182/protocol

3.4.5 LCM

The UC1 integrates Eurecom's Lightweight Edge Slice Orchestration (LiSO) component to efficiently manage the

lifecycle of its dynamic, container-based applications, along with the robust Cloud Edge Continuum

infrastructure. This strategic decision not only strengthens the orchestration framework already established in

UC2 but also facilitates a seamless integration of processes and encourages the reusability of resources across a

wide range of UCs within the AC3 architecture.

3.4.5.1 Application Deployment

LiSO consists of two primary orchestration layers and an image registry, as defined in D2.3 [6]. It is integrated

into UC1, as depicted in Figure 13 which illustrates a simplified architecture of UC1 to highlight the LCM

integration:

• The Service Orchestration Layer [6] from LiSO is responsible for translating the UC1 AppD generated by

the OSR into Resource Level Objects (RLOs) such as K8s deployment specifications or helm charts. This

translation is a crucial step that enables the seamless deployment of the UC1 microservice-based

application on the edge or cloud LMS. By effectively transforming the AppD into RLOs, LiSO ensures that

the application can fully utilize the resources available in the Cloud Edge Continuum.

• Resource Orchestration Layer (ROL) interfaces directly with the edge and cloud K8s LMS using a plugin

mechanism through the LMS northbound interface (NBI), executing resource-level operations such as

deployment, scaling, and termination.

http://ionos-s1.sparkworks.net/
http://ds.uc1.ac3.sparkworks.net:18182/protocol

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 32

• Since LiSO fetches and stores container images specified via URLs in the AppD/VNFD files for seamless

service deployment, a Container Image Registry is deployed in the Edge Domain as shown in Figure 13:

Overview of UC1 Architecture, highlighting the integration of LiSO's orchestration layers and image

registry.

Figure 13: Overview of UC1 Architecture, highlighting the integration of LiSO's orchestration layers and image registry

Note that more details are given in section 4.3.3 about the integration of LiSO with OSR.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 33

3.4.5.2 Application Adaptation

As part of our Application Adaptation process, UC1’s LMS must seamlessly join the AC³ architecture. To achieve

this, we leverage Eurecom’s LiSO architecture, its ROL component allows the LMS to register asynchronously in

a collaborative, multi-stakeholder environment. Figure 13 illustrates how ROL interacts directly with the

northbound interface (NBI) of edge domain, enabling the LMS to adapt and integrate dynamically into the overall

continuum.

In UC1, the LMS is implemented using K8s, the industry-standard platform for container orchestration. This setup

enables efficient resource management and microservice deployment at the edge and cloud domains in UC1.

K8s oversees both computing resources and the lifecycle of services within the edge domain, ensuring high

availability and fault tolerance.

The LMS in UC1 is responsible for orchestrating and running containerized applications dynamically based on

local resource availability and workload demands. By using K8s, UC1 can take advantage of K8s robust

orchestration features, such as automatic scaling, self-healing (i.e., auto-restarting failed containers), and

resource-based scheduling to optimize local edge domain operations.

The edge and cloud LMSs work closely with the LiSO LCM, which in turn interacts with the OSR component to

obtain AppDs and utilize the instructions to deploy microservices. This setup facilitates the deployment of

applications using these AppDs which is a key output of the User Plane.

This integration significantly enhances the system's capacity to speed up and adapt swiftly to evolving workload

demands, a vital feature for UC1, particularly in scenarios such as real-time environmental data processing and

occupancy detection. Consequently, this advancement enhances overall efficiency and facilitates real-time

execution and processing within UC1.

3.4.5.3 Migration Algorithm

One of the key components enhancing the architecture is the migration block, which should be integrated into

the LiSO LCM (as shown in Figure 13). The migration module continuously monitors cloud-edge computing

resources to identify hidden patterns that can optimize service allocation between cloud and edge servers. It is

powered by a reinforcement learning (RL) algorithm introduced in Section 5.2 of D3.2.

Following the initial service placement, the migration module proposes resource reallocations to ensure the

application's latency requirements are maintained, especially when resource utilization begins to degrade. By

leveraging real-time data on computing resources at both the cloud and edge levels, along with network latency

metrics, the migration block drives its decisions. The RL algorithm learns and adapts to select the most suitable

server for migration, ensuring consistently low latency performance.

3.4.5.4 AI-based LCM and Decision Enforcement Algorithms

As part of the AC3 integration strategy, UC1 incorporates Zero-touch configuration and application management

capabilities. The approach is built upon specifically the work initiated in Sections 5.3.2 and 5.3.3 of D4.1 [4] based

on the two distinct XAI-enabled algorithms developed in WP4. These algorithms can offer UC1 predictive and

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 34

explainable decision-making capabilities, enabling detailed resource control, proactive scaling, and SLA

preservation.

XAI-Enabled Fine Granular Resources Autoscaler

This algorithm provides a fine-grained vertical autoscaling mechanism for the UC1 application. It leverages

eXplainable AI (XAI) techniques to analyze resource usage trends in relation to their limits and predict when

resources should be adjusted to maintain performance.

The most relevant elements to be integrated into UC1 are: (1) an ML predictor based on XGBoost to detect

potential QoS degradation by analyzing CPU and memory usage patterns; (2) an explainability module using SHAP

to identify the most influential resource metrics contributing to performance issues; and (3) a decision Engine

that leverages SHAP insights to trigger targeted, fine-grained vertical scaling actions (CPU, memory, or both),

ensuring efficient resource utilization and SLA compliance.

The following outlines several key benefits:

• Explainability: Operators understand why decisions are made.

• Efficiency: Resources are scaled only when and where needed.

• Zero-touch: Autonomous operations reduce human intervention.

XAI for Prediction of Infrastructure Usage

This strategy may be incorporated into UC1 to accurately predict future resource utilization (CPU, memory) at

the infrastructure level, facilitating proactive and optimized management decisions through clear and

understandable AI models.

The aim of integrating this algorithm is to reach the following benefits:

• Reduces system downtime or degraded performance by anticipating overload scenarios.

• Enables resource-aware scheduling, improving overall edge efficiency.

3.5 Remaining Integration

Working on the next steps of UC1, we can summarize them in the following:

• Deployment of the UC1 cloud computing location. This is needed for the evaluation of the “Seamless

Microservice Deployment and Migration” and the “Time to process and react to sensor data” scenarios.

The process will follow a similar approach to the one followed in our edge deployment, with a K8s

installation orchestrated using the same tools. The main difference would be the extra resources made

available for our installation, as it would be capable of processing larger volumes of data.

• Deployment of edge and cloud computing location monitoring applications. This is needed for the

“Seamless Microservice Deployment and Migration” and “AI-powered Infrastructure Monitoring &

Control Service at the Edge” scenarios. Using the monitoring information, the CECCM would be able to

decide when and what type of migration is needed between the cloud and edge compute locations.

• Comparative analysis of the behavior of the UC1 application in the two testbed locations. This is part of

the “Time to process and react to sensor data”. Once we can deploy our application at both locations,

we will be able to assess how much data each location can process and handle, and what the benefits

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 35

are from moving the computation closer to the data sources of our application, instead of transferring

them to the cloud.

• Evaluate the deployment of the UC1 application to the edge and cloud locations of our testbed. This is

part of the “Zero-touch configuration, application management, and data management”, allowing us to

understand how much easier the process of deploying our application is.

3.6 UC1 Integration summary

The table below offers an overview of the integration status for UC1. It summarizes the key components and

their progress, highlighting both the advancements made and the areas still in development.

Architecture component Sub-Component Description Integration status

Application gateway (GUI)

Allow the application
developer to define its
application components
and SLA.

 In Progress

OSR
Allow the generation of
the AppD

 In Progress

LMS Edge

We will execute the micro-
services that run at the
network's edge for lower
latency and bandwidth
optimisation.

 In Progress

LMS Cloud

Will execute the micro-
services that cannot run at
the network's edge due to
high resource usage or
data volumes, and latency
is not a constraint.
Similarly, for network
unavailability at the edge.

 In Progress

Catalogues
Hosts the component
templates for the
application

 Complete

Application and resource
management

AI-based LCM and
Decision Enforcement

1. Manage the
microservices Life Cycle
2. Migration algorithm
that adapts if the edge
resource degrades or
moves to the edge a
micro-service

1. In progress

2. In progress

Zero-touch configuration
and application
management, data
management

Predict and describe
infrastructure resources
and implement automated
corrective measures.

 Not started

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 36

AI-Based Resource profile
Describe the resources of
the infrastructure

 Not started

AI-Based Application
profile

Predicting Application
Behaviour

 Not started

Monitoring
Monitoring the micro-
services KPI

 Not started

Data Management

Catalogues
Provides descriptions for
the available data sources

 Complete

Data Provider Connector
Provides access to the
data made available

 Complete

Data Consumer Connector

Initiates the streaming of
data from the data source
to the application micro-
services

 Complete

Data Mappers
Transforms incoming data
as needed

 Complete

Data Manipulator Core application logic Complete

Message Broker
Responsible for
transferring data between
application components

 Complete

Table 3: UC1 Integration summary

This summary aims to provide a clear snapshot of the current integration status and the steps taken toward the

full integration of the UC within the project.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 37

4 UC2
4.1 Use Case Description

UC2 focuses on the deployment of a sophisticated Smart Monitoring System designed to enhance urban security,

traffic management, and environmental surveillance. This system integrates UAVs, IoT technologies, AI/ML

algorithms, and edge computing to enable intelligent, responsive, and efficient monitoring capabilities within a

smart city context.

UC2 demonstrates how real-time data from UAV-mounted cameras and distributed IoT sensors can be processed

using edge computing resources and analysed through AI-driven techniques. The CECCM plays a central role in

managing this distributed infrastructure, enabling the seamless execution of surveillance and monitoring

applications across the cloud-edge continuum. The system supports both live video streaming and video-on-

demand (VoD) functionalities, with the ability to store video footage for further analysis and insights generation.

Ultimately, UC2 exemplifies a powerful integration of technologies to support data-driven decision-making for

urban environments.

4.1.1 Use Case Objectives

The objectives of UC2 align closely with the goals of the AC³ framework, focusing on flexible deployment,

intelligent processing at the edge, and automated management of microservice-based applications. The key

objectives include:

• Simplified Application Definition: Use the GUI and OSR to define, manage, and deploy microservice-

based applications easily.

• Zero-Touch Management and Orchestration: Leverage CECCM for autonomous configuration, life-cycle

management, and microservice orchestration using AI/ML.

• Flexible Behaviour Reconfiguration: Dynamically switch between functionalities like object tracking,

activity detection, and surveillance using semantic requests.

• Resilient Microservice Deployment: Enable optimal placement and seamless migration of services across

UAVs and edge nodes in response to resource availability.

• Edge Intelligence and Analytics: Run AI models (e.g., Deepstream, YOLO) on UAVs and edge devices for

real-time object detection, behaviour analysis, and traffic monitoring.

• Environmental Monitoring and Response: Use UAV-mounted IoT sensors for real-time tracking of

conditions such as CO₂ and temperature.

• Scalable and Adaptive Operations: Automatically manage workloads and scale services across distributed

cloud-edge resources to meet changing demands.

4.1.2 UC2 Stakeholders

4.1.2.1 Users / System Administrators

The primary users of the deployed UC2 application include stakeholders responsible for urban surveillance and

public safety. These users include building security personnel in residential complexes (e.g., flat surveillance

teams), municipal surveillance operators, and city infrastructure monitoring units. In cases of unusual events or

security alerts, law enforcement agencies such as the police may also access the system to review live video

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 38

feeds or retrieve evidence from stored footage. These stakeholders rely on the system for configuring edge

devices, viewing live streams, receiving real-time alerts, and analysing labelled video or sensor data to ensure

situational awareness and rapid response.

4.1.2.2 Application Developers / DevOps

Application developers are responsible for defining and building the microservices required for UC2 surveillance

tasks, such as video streaming, object detection, and telemetry analysis. Using the CECCM’s GUI, they define

AppD’s that specify service components, resource needs, and deployment policies. The DevOps team handles

the deployment process, leveraging the CECCM’s LCM system to orchestrate service placement across cloud,

edge, and far-edge nodes. This reduces manual deployment effort and ensures high availability and scalability

through automated lifecycle management, including service migration and fault tolerance.

4.1.2.3 Infrastructure Provider

The infrastructure provider supplies and maintains the CECCM platform used in UC2. This includes the setup and

integration of core components such as the GUI, OSR, LCM, and LMS across cloud and edge environments. The

provider ensures that these components are fully operational and compatible with K8s, K3s, and SD-WAN

networking technologies, enabling seamless deployment and orchestration of microservices for the application

developers and DevOps teams.

4.2 Use Case Architecture

The architecture of UC2 is designed to support AI-driven video surveillance by leveraging the AC³ framework. It

integrates UAV-mounted and stationary IoT devices with microservice-based video analytics components,

orchestrated through the AC³ framework. The system enables distributed processing and real-time insights

across far-edge, edge, and cloud environments. The architecture follows a modular and scalable approach,

relying on containerized services managed by K8s-based orchestration layers and interconnected through SD-

WAN to ensure seamless communication and deployment flexibility.

4.2.1 Use Case Application

The architecture of UC2 involves a smart monitoring system built on UAVs, IoT devices, and video analytics using

AI at the edge. The core components include a system administrator interface, edge devices (Raspberry Pi and

Nvidia Jetson), a video analytics system powered by DeepStream and ML, and the AC³ framework. The

administrator interface allows configuration and control of edge devices, including monitoring live streams,

receiving real-time alerts, and viewing segmented images for telemetry analysis. Through this interface, system

administrators interact with the system’s frontend, backend, and analytics microservices, performing actions like

adding or deactivating devices.

 At the far edge, UAVs are equipped with Nvidia Jetson devices for on-device video analysis and AI processing,

while Raspberry Pi units handle streaming without analytics capabilities. The video analytics system uses

DeepStream and YOLO for real-time object detection and activity recognition, supporting both live and VoD

functionalities. The AC³ framework orchestrates the infrastructure, managing computing resources across the

cloud-edge continuum. It enables service relocation, fault tolerance, and latency reduction through AI-based

orchestration and lifecycle management of microservices. Figure 14 illustrates this setup, where video processing

is efficiently managed across a central server, regional edge servers, and far-edge devices deployed in the parking

lot.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 39

4.2.1.1 Application Components

The UC2 application is composed of multiple microservices deployed across a distributed infrastructure that

includes cloud, edge, and far-edge nodes. These services are containerized and managed using K8s and K3s for

scalability and orchestration. The central server is the key component responsible for handling CRUD operations

related to users, devices, and regions, with data persistence handled via an SQL database such as PostgreSQL. It

serves the frontend API, which allows users and administrators to register devices, launch video streams, upload

videos, and query telemetry data.

The system also includes a regional server that manages IoT devices and cameras within designated areas. This

server operates as a reverse proxy and performs local video processing using Nvidia DeepStream. It plays a critical

role in enabling federated learning, where models deployed on regional servers and IoT devices are aggregated

into a global model maintained at the central server.

 At the far edge, UAVs are equipped with Nvidia Jetson devices capable of performing on-device AI and real-time

video analytics, while Raspberry Pi units are limited to video streaming due to lower processing capabilities.

Microservices requiring high computing resources or low latency are placed on the LMS Edge using the K8s API,

while those with lightweight requirements, such as video capture and object detection, are deployed on UAVs

using K3s. Frontend services are hosted on the LMS Cloud (IONOS Cloud), and the networking between these

distributed nodes is managed by an SD-WAN controller.

Figure 14. Architecture of the video surveillance and environmental monitoring system, illustrating data processing

across central servers, regional edge nodes, and far-edge devices in an urban parking lot.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 40

4.2.1.2 Component Interaction

The interaction between microservices in UC2 follows a structured flow orchestrated by the AC³ framework. The

process begins with the application developer, who uses a GUI to define the application components, their

interdependencies, and SLA requirements. This information is submitted in the form of an AppD, which is then

processed by the OSR. The OSR interprets the semantics of the descriptor, validates dependencies, and ensures

policy compliance before handing it over to the LCM.

The LCM coordinates the deployment of services to the appropriate infrastructure layer—cloud, edge, or far

edge—based on available resources and runtime policies. It manages the full lifecycle of microservices, including

initial placement, scaling, migration, and failure recovery. To interconnect the distributed computing nodes, the

LCM uses the SD-WAN controller through its NBI to establish flow configurations and ensure seamless

communication across the continuum. Monitoring tools are integrated to track microservice KPIs, while AI-based

algorithms are used for placement decisions and predicting application and infrastructure behavior. For example,

if a far-edge node’s resources degrade, the system can trigger a migration to maintain service continuity.

The communication between distributed components is facilitated by LMS Networking via the SD-WAN

controller, which enables connectivity across cloud, edge, and far-edge clusters. This setup ensures that services

can interact reliably despite dynamic resource conditions. Metadata from object detection, sensor readings, and

activity analysis is processed and fused across these layers, allowing administrators and users to access real-time

insights via the frontend API. Access control is enforced by a dedicated authorization service, ensuring that only

permitted users can interact with specific components or data streams.

4.2.2 UC Testbed – Hardware and Software

As previously mentioned, the UC2 application is based on a microservices architecture and will be deployed

across a multi-cluster environment connected between them using SD-WAN. In this section, we describe the

hardware and software setup of the testbed used for this deployment. The whole picture is presented in Figure

15. The testbed spans two geographically distinct locations: the IONOS cloud data centre located in Germany,

and EURECOM's edge and far-edge infrastructure located in France.

4.2.2.1 Infrastructure Details

IONOS Region

The IONOS infrastructure consists of three main clusters and is built on machines with 32 GB of RAM, 16 CPU

cores, and approximately 120 GB of HDD storage. All nodes run Ubuntu 22.04 as the operating system.

• Management Cluster:

o This is a single-node cluster with 4 CPU cores, 8 GB of RAM, and 20 GB of HDD storage. It runs a

vanilla K8s setup and is dedicated to hosting core management software such as the AI-based

LCM (LiSO, in this UC) and the SD-WAN controller.

• SD-WAN Edge Cluster:

o Also, a single-node setup, this cluster has 4 CPU cores, 8 GB of RAM, and 20 GB of HDD storage.

It runs the SD-WAN edge component, enabling connectivity between the cloud cluster and other

infrastructure setups.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 41

• Cloud Cluster: This is a two-node cluster

o Control Plane Node: Equipped with 4 CPU cores, 8 GB of RAM, and 64 GB of HDD storage, this

node hosts core K8s components (such as the API server) along with AC3 components like the

K8s LMS and the VIM adaptation agent. A local DNS server is also deployed to manage domain

name resolution for external services.

o Worker Node: This node, with 10 GB of storage, is dedicated to deploying user-facing

microservices such as the NGINX reverse proxy and the application frontend.

This two-node design was chosen to separate the execution of application components from AC3 management

components.

The cloud cluster is connected to the SD-WAN cluster through a local area network (LAN) provided by IONOS.

EURECOM Region

The second deployment region is hosted by EURECOM and is composed of two sub-regions: the EURECOM Edge

and the EURECOM Far Edge.

EURECOM Edge

The EURECOM Edge infrastructure consists of approximately 500 GB of storage, 68 GB of RAM, and 22 CPU cores,

distributed across two clusters:

• SD-WAN Edge Cluster:

This cluster is a single virtual machine with 2 CPU cores, 4 GB of RAM, and 20 GB of storage. It is dedicated to

running the SD-WAN edge component, providing connectivity between the EURECOM edge and other regions.

• Edge Cluster:

This is a single-node cluster running on K3s. It includes 20 CPU cores, 64 GB of RAM, and 480 GB of disk space. It

hosts both AC3 components—such as the K3s LMS and the VIM adaptation agent—and selected application

microservices, including the database backend. Due to the relatively higher resource availability compared to the

far edge, logical isolation between AC3 components and application microservices is maintained using K8s

namespaces.

Similar to the IONOS setup, the SD-WAN edge and edge clusters are interconnected via a LAN provided by

EURECOM.

EURECOM Far Edge

The second part of the EURECOM region is the EURECOM Far Edge, represented by a single-node K3s cluster

running on an NVIDIA Jetson Orin device equipped with a GPU. This node has 64 GB of RAM and 64 GB of storage.

This cluster is used to deploy the same AC3 components as in the edge cluster—specifically, the K3s LMS and the

VIM adaptation agent—as well as the image processing service. As in the edge setup, logical isolation is enforced

using K8s namespaces to separate AC3 components from application-level services. For connectivity, the far-edge

cluster, running on the UAV, is connected via a 5G base station deployed at EURECOM, enabling communication

with the other parts of the infrastructure.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 42

Figure 15. Testbed Architecture

4.3 Component Integration Design

The UC2 smart monitoring application leverages multiple components of the AC3 CECC Manager framework,

working together as illustrated in Figure 16, where the implemented AC3 components are highlighted. These

components orchestrate UAV-based video analytics and sensor data streams across the cloud–edge continuum.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 43

Figure 16. Mapping of the AC3 Component Architecture to the Current Implementation in UC2.

The UC2 application is composed of five microservices, each deployed in a suitable region based on its role and

interdependencies. For example, the Frontend microservice needs to be accessible over the internet but does

not require low-latency access to other microservices or proximity to camera devices. Therefore, deploying the

frontend in the cloud conserves edge resources, which can then be allocated to microservices that require edge

deployment. A similar rationale applies to the Nginx microservice, which acts as a gateway by exposing the

services to end users through a single point of access.

The DeepStream microservice requires direct access to the camera to stream video and utilizes the NVIDIA Jetson

GPU for traffic analysis. It sends both the video stream and the object detection results to the Backend service.

Therefore, this microservice is deployed on the drone, which is equipped with both the camera and the Jetson

device. The placement of the microservices and their dependencies is illustrated Figure 17.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 44

Figure 17. Microservice Architecture and Placement in UC2

To deploy the application, the implemented CECC Manager components are used, as illustrated in Figure 18.

First, the application developer uses the northbound API (via the GUI) to define the UC2 application using the

available application and data source blueprints. Once the application composition is submitted, the request is

processed by the OSR. The OSR validates the UC2 AppD’s and policies, then, merges the service and data

definitions into a single AppD, ensuring that all semantic rules and requirements are met.

Next, the application creation request is forwarded to the LCM, which selects the appropriate infrastructure

(cloud or edge) for each microservice and initiates the application onboarding process in the selected regions.

To achieve this, the LiSO LCM sends requests to the Virtual Infrastructure Manager (VIM), which acts as the

Decision Enforcement component.

Each deployment site has a corresponding Adaptation Agent, implemented as a VIM. The latter manages the

local management systems (e.g., K8s and K3s) and image registries to onboard the microservice images. Once

the application is onboarded, LiSO configures the inter-cluster network via the SD-WAN Controller, ensuring that

microservices deployed across different regions can communicate with each other.

Following onboarding, LiSO begins the application instantiation process. As with onboarding, LiSO's requests pass

through the VIM Manager and are executed by the VIM to instantiate the microservices across the three target

clusters: IONOS (Cloud), EURECOM Edge, and onboard the drone (i.e., far edge) equipped with an NVIDIA Jetson

device.

Finally, LiSO completes the network configuration by exposing the user-facing microservices to the internet

through the SD-WAN Controller, which updates the SD-WAN Edge network rules accordingly. Once the

application is fully instantiated, LiSO returns information about the running instances, including IP addresses,

ports, and the links to access the internet-exposed microservices.

While the application is running, the Monitoring System, described in the next section, continuously collects

performance metrics from the deployed services and infrastructure; for example, container CPU/memory and

streaming framerates from the Jetson nodes. These metrics feed back into the LCM to support application

adaptation via resources scaling or microservices migration.

In summary, the CECCM components (Service Catalogue, OSR, LCM, Monitoring and Data Management) enable

the UC2’s video analytics services to run continuously and migrate seamlessly across UAV, far-edge, and cloud

nodes as conditions change.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 45

Figure 18. Detailed Workflow for UC2 Application Deployment Using the AC3 CECC Manager Framework

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 46

4.4 Component Integration Status

4.4.1 Application Interface

The user-facing application developed for UC2 offers a comprehensive and interactive interface designed to

manage the UAVs, monitor system performance, and review real-time and historical detections. The interface

has been developed with usability in mind, providing a smooth user experience for system administrators and

operators.

Figure 19 shows the user authentication screen, which provides a secure login experience enhanced with

CAPTCHA verification to ensure bot protection.

Figure 19. UC2 User Authentication screen

After successful login, users are directed to the Regions dashboard, as illustrated in Figure 20. Here, they can

create and manage edge servers by filling in configuration details such as IP address and status.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 47

Figure 20. UC2 Edge Server configuration screen

Figure 21 demonstrates the process of adding a far edge device to an existing edge server. Users can define the

device’s location, type, and associated sensors through a structured form. Once saved, the devices appear in the

system and can be controlled from the interface.

Figure 21. UC2 Far Edge Server configuration screen.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 48

Figure 22 presents the device management screen, where users can view the status of devices, including their IP

address and operational status. Control actions such as viewing live data or deactivating a device are available

directly from this interface.

Figure 22. UC2 device management

Figure 23 highlights the real-time detection and monitoring dashboard, which includes live video feeds with

bounding boxes for object detection (e.g., people, cars, signs), system resource usage (CPU, GPU, memory), and

a dynamic timeline chart visualizing detection events over time.

Figure 23. Real-time detection and monitoring dashboard

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 49

Finally, Figure 24 showcases the query and archive review panel, allowing users to filter, retrieve, and browse

through large volumes of historical detection events using attribute-based filters. Results are presented in a

paginated grid of annotated snapshots, enabling deep forensic analysis.

Figure 24. Query and archive review panel

4.4.2 GUI for Developer (Application Gateway)

The GUI, also known as the Application Gateway, is the primary interface through which application developers

define their application deployment configurations. It offers two modes of interaction:

• Interactive Form-Based Input: Users can fill in an intuitive multi-step form that captures all necessary

information, including application metadata, microservices configuration, networking preferences, and

SLA constraints. This form is designed to simplify the process of describing a complex microservice-based

application, even for non-expert users.

• Structured JSON Upload: Alternatively, users can upload a predefined JSON file conforming to the AppD

schema. This method allows advanced users to work in a more automated way, reusing or customizing

existing configurations.

Figure 25 illustrates the first step of the form, where the user provides basic application metadata such as the

application name and version. It should be noted that even though we are showing the GUI interfaces only for

UC2, all UCs will use this GUI as an entry point to AC3 CECCM to define, configure, and deploy their respective

applications.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 50

Figure 25. UC2 Application metadata input

Figure 26 shows a deeper level of interaction, where the user configures individual microservices by specifying

container image, resource requirements, environment variables, and service-specific SLAs.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 51

Figure 26. Microservices configuration form

Figure 27 demonstrates how users define network interconnections, describing which services communicate

with each other, the protocol used, and expected network SLAs.

Figure 27. Networking Graph Configuration

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 52

These inputs are then passed to the OSR, which handles the backend logic for descriptor generation.

4.4.3 Ontology and Semantic Reasoner

The OSR is a central component responsible for translating high-level user inputs into a standardized, machine-

readable AppD, expressed in YAML format. This descriptor captures all aspects of the application, including

microservice definitions, interconnections, SLAs, and deployment constraints. Upon receiving the structured

input from the GUI, the OSR performs a number of operations:

• Validation of the input data based on predefined ontologies and JSON schemas.

• Composition logic, which includes interpreting dependencies, aggregating resource requirements, and

organizing networking rules.

• Retrieval of complementary services if needed from Piveau, especially for data connectors or utility

services linked to the specified datasets.

• Descriptor generation, where all this information is synthesized into a deployable YAML file compatible

with the Cloud-Edge Continuum infrastructure.

Following is the high-level structure of the UC2 AppD generated by the OSR. It includes application metadata, a

microservices configuration section, networking information section, and SLA specifications.

ApplicationName: "Surveillance System"
Version: "1.0.0"

Microservices_configuration:

Global_SLA:

ServiceAvailability: "99.9%"
MaxLatency: "500 ms"
MaxResponseTime: "Low"
DataThroughput: "High"

Following is a concrete example of the Deepstream microservice configuration. This includes CPU/GPU

requirements, image name, exposed ports, and required environment variables for AI-based video analytics.

• MicroserviceName: "deepstream"

Version: "1.1.0"
Image: "capy8ra/ac3-uc2-ds: 28"
ID: "deepstream"
Dependencies:

- "backend"
- "database"

ResourceRequirements:
Cpu: "4 VCPUs"
Memory: "16Gi"
Storage: "N/A"
Gpu: "NVIDIA GPU (specific model based on throughput)"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 53

MicroservicesSLAs:
ServiceAvailability: "99.9%"
MaxResponseTime: "Low" DataThroughput: "High"
ReplicaCount: "1"
EnvironmentVariables:

- Name: "LOG_LEVEL"
Value: "INFO"
- Name: "DB_HOST"
Value: "db"
- Name: "DB_PORT"
Value: "5432"
- Name: "DB_NAME"
Value: "ac3"
- Name: "DB_USER"
Value: "postgres"
- Name: "DB_PASSWORD"
Value: "root"
- Name: "NO_DISPLAY"

Value: "1"
Protocol: "TCP/RTSP"
InternetAccess: "false"
GeographicalArea:
Region: "Edge"
LocationType: "edge"

Following is the networking graph extracted from the descriptor, illustrating service-to-service communication

paths and the corresponding SLAs for each connection.

Networking_graph:

• Source: "backend"

Destination: "db"
Protocol: "TCP"
Port: "5432"
ConnectionSLAs

Latency: "Less than 500 ms"
Availability: "99.9%"
Bandwidth: "High"
ErrorRate: "Less than 1%"

• Source: "frontend"

Destination: "deepstream"
Protocol: "TCP"
Port: "8585"
ConnectionSLAs:

Latency: "Less than 500 ms"
Availability: "99.9%"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 54

Bandwidth: "High"
ErrorRate: "Less than 1%"

• Source: "frontend"

Destination: "backend"
Protocol: "TCP"
Port: "8000"
ConnectionSLAs:

Latency: "Less than 500 ms"
Availability:
"99.9%"
Bandwidth: "High"
ErrorRate: "Less than 1%"

By automating the composition and validation of AppD’s, the OSR enables scalable and accurate deployment

across the CECC infrastructure. The generated descriptor is ultimately passed to the LCM for deployment.

4.4.4 LCM

In UC2, application LCM functionalities are implemented using the LiSO network and service orchestrator
developed by EURECOM. LiSO exposes a northbound REST API that enables the orchestration of services and
their constituent applications. Services are described using a Network Service Descriptor (NSD), which defines
the specific configuration of microservices, their interdependencies, and the infrastructure and resource
requirements of the applications.

As illustrated in Figure 28, LiSO is composed of several key components, including the orchestrator, VIM manager
and the VIM. The VIM manager translates high-level orchestration requests into a series of object creation or
deletion operations for the underlying VIM. While the VIM interacts directly with LMS APIs such as K8s, K3s, and
OpenShift. Additionally, the VIM handles the management of container images for microservices and oversees
local image registries.

4.4.4.1 Application Deployment

LiSO exposes its rest API to the OSR, meaning that any application creation or deletion is triggered by the OSR.
In order to enable the communication between the two components, we introduce a translator at the OSR level,
the role of the translator is to translate the AC3 application descriptor into an NSD. The translator sends the
resulting NSD as part of the application creation request to LiSO.

At the LiSO level the NSD is decomposed by microservice, and each microservice follows the onboarding and
instantiation steps.

For the onboarding, LiSO constructs the microservice package, which is a descriptor of the microservice. LiSO
requests the VIM Manager to onboard the microservice. The VIM manager then sends a request to the VIM to
push the microservice image to the local registry used at the deployment location and create a namespace (in
the case of K8s LMS) or a project (in the case of OpenShift LMS) for the application. The microservice container
image can be collected in three different ways: either a container image repository available at a registry

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 55

accessible to the VIM, a Git repo with a Dockerfile so that the VIM can build the image and push it locally, or as
a tar file location containing a save of the container image (the output of docker save).

At the instantiation stage, LiSO creates an instance ID for the application; an onboarded application can be
instantiated multiple times; each instance has its own ID and is independent in its lifecycle management from
the other instances. Once the instance ID is created, a request is then sent to the VIM Manager, which will
request the VIM to create all the objects needed to run the application, including services, deployments,
configmaps, volumes, etc. Once the objects are created, LiSO ensures that the application’s microservices are in
a running state. This check goes through the VIM Manager and the VIM. After the application is running, LiSO
receives all information about the microservice, including network configuration.

Figure 28 summarizes the AppD translation from the OSR to K8s Objects.

Figure 28. Translating the AC3 AppD to a LiSO Network Service Descriptor

4.4.4.2 Application Adaptation

LiSO uses a monitoring system and resource exposure, as shown in Figure 29, to continuously monitor the
running application and the underlying infrastructure. In terms of application adaptation mechanisms, LiSO
implements two mechanisms:

• Application Fault Detection: LiSO is capable of detecting application instance failures and can

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 56

automatically trigger the redeployment of the affected application. This mechanism relies on periodic
polling of the LMS API to monitor the status of running workloads. For example, in a K8s environment,
LiSO checks whether the pods are in the “Running” state. If they are not, and the issue persists beyond
a predefined time interval, LiSO initiates the recreation of the application to restore its functionality.

• Detection of Application Performance Degradation: LiSO leverages monitoring data to detect suboptimal
resource configurations, particularly when the resources allocated to an application are insufficient for
its proper functioning. Depending on the preferences set by the application owner, LiSO can then:

o Mark the application's configuration as insufficient. As a result, any subsequent status requests
for the application will include a "resources-misconfiguration": "true" field in the response.

o Invoke the XAI-enabled vertical resource autoscaler, developed in WP4, to dynamically adjust
the application's resource allocation and correct the misconfiguration.

Figure 29. Detailed Architecture of LiSO and Its Mapping to AC3 Framework Components

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 57

4.4.4.3 AI LCM algorithms

LiSO’s decision engine incorporates AI/ML algorithms to optimize lifecycle management, employing:

• Predictive Analytics: Historical telemetry (CPU load, network throughput, sensor trends) is fed to a
prediction model that forecasts future workload and resource demand. Based on these predictions, LiSO
proactively scales the application’s resources.

• Microservices Migration: The main algorithm we will showcase in UC2, implemented by LiSO, is the
microservice migration mechanism, which is thoroughly detailed in deliverable D3.2. The core idea is
that when an edge node becomes overloaded or encounters network degradation, LiSO can perform live
container migrations or reassign tasks to alternative nodes with available resources. This helps maintain
consistent frame rates and low latency.

The outputs of these AI algorithms feed directly into LiSO’s orchestration decisions, effectively closing the loop
of continuous learning and orchestration.

4.4.5 Monitoring

4.4.5.1 Monitoring Framework Integration

In order to gain comprehensive insight into the performance of managed applications and the underlying
infrastructure resources, LiSO employs a custom monitoring framework. This framework is designed to provide
end-to-end visibility into application performance across all infrastructure locations where the application's
microservices are deployed.

The monitoring system uses a metrics collector for each application at each deployment location. These local
collectors gather performance metrics relevant to the application instance in their specific region. All keys UC2
metrics (resource usage, frame rates, sensor readings, etc.) are collected from local monitoring systems available
at the cluster level, such as Prometheus. Then, the collectors enrich the collected data with contextual
information such as the application ID, microservice ID, and deployment location. The structured metrics are
then sent to a Kafka message broker.

From Kafka, a central collector, one per application, retrieves metrics from all deployment regions, aggregates
them per service, and forwards the results to an external RabbitMQ broker. This real-time metrics stream enables
application owners to access up-to-date performance data, which is particularly useful when real-time
monitoring is required. In parallel, the application metrics collector stores the metrics in an InfluxDB time-series
database. These stored metrics are then visualized through custom dashboards, tailored per application or per
application owner, using an external Grafana server. The LCM module has access to this database and can query
metrics across different applications as needed.

Note that both the metric collection streams and their exposure are isolated per application. Access to the
external Grafana and RabbitMQ instances requires valid credentials, ensuring data privacy and enabling secure
multi-tenancy.

4.4.5.2 Monitoring Metric

In UC2, we focus on the metrics that most accurately reflect the application's performance, including:

• Resource Usage: CPU and GPU utilization, memory usage, and disk I/O for each node and container.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 58

• Network Metrics: Throughput and packet rates on network interfaces; latency and bandwidth usage
between edge nodes.

• Application Performance: UC2-specific KPIs such as video frame rate (frames per second), end-to-end
latency, and frame-encoding quality.

• Sensor Values: Relevant sensor readings (e.g., camera frame timestamps, environmental sensor values)
generated by UC2 devices.

• Service Health: Counters for active connections, request rates, error rates, and container restart counts.

All metrics are presented on Grafana dashboards. Operators can view CPU/memory usage over time alongside
the application’s frame rate, making it easy to correlate load with performance. Alerts can be set on these metrics
(e.g., “frame rate < 25 fps” or “CPU > 90 % for 5 min”) to trigger notifications or further LiSO actions.

4.4.6 Compute LMS

K8s has been adopted as the Compute Local Management System for UC2. We have deployed a lightweight K8s
distribution, K3s, at the far-edge site (on the NVIDIA Jetson/RPi hardware) and a K8s cluster in the central cloud.
LiSO is connected to these clusters’ APIs and is capable of launching container pods on either. The initial
deployments (video analytics and data services) ran successfully on the Jetson nodes, confirming that the
Compute LMS is functioning. Resource profiles of the clusters (CPU, memory, GPUs) have been entered into the
CECCM so that LiSO can target the appropriate nodes. In short, the compute environment is in place and
recognized by the CECCM: UC2 services can be instantiated on the K8s-managed edge and cloud as needed.

4.4.7 Network LMS

We use the SD-WAN controller and SDWAN Edges at each region as the network LMS for the UC2. The SDWAN
Controller provides an API to the LCM to programmatically configure the network. The configuration includes
interconnecting the microservices running in different regions: IONOS Cloud and EURECOM Edge. Further, the
SDWAN Controller also allows the LCM to expose a microservice to the internet. All the configurations are
enforced at the SD-WAN Edges level, where overlay networks are created for intra-cluster communication and
use DNAT rules to expose application ports to the internet.

4.5 Remaining Integration

4.5.1 Deployment via GUI

The components needed to finalize the deployment process are already integrated. However, to enhance the

user experience, application owners should be able to deploy their applications through a simpler interface than

the command line. To achieve this, the deployment workflow needs to be integrated into the AC3 web portal.

4.5.2 Integration of Predictive Models with AI-based LCM

As previously mentioned, this UC demonstrates the microservice migration algorithm. To support this, the AI

models that trigger the migration process must be integrated with the LCM and other decision-making

components responsible for selecting the new microservice location.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 59

4.5.3 Final Use Case Test

The UC has already been validated in a multi-cluster environment using both local and 5G networks. However,
to test in a more realistic scenario, we still need to mount the object detection model on a drone.

4.6 UC2 Integration Summary
Table 4: UC2 Integration summary

Architecture component Sub-Component Description Integration status

Application gateway
(GUI)

Allow the application developer to
define its application components
and SLA.

Complete

OSR Allow the generation of the AppD Complete

LMS Edge

Will manage the micro-services
that cannot run at the far edge
(due to low computing resources)
and centralised cloud for low
latency or bandwidth
optimization.

Complete

LMS Far Edge

Will manage the micro-services
that will run on the far edge device
(i.e., UAV). Video capture and
object detection microservices.

Complete

LMS Cloud
Will manage and run the front-end
micro-service.

Complete

LMS Networking
Will interconnect the clusters (K3s,
K8s and ION Cloud).

Complete

Application and resource
management

Monitoring Monitoring the micro-services KPI Complete

AI-based LCM and
Decision
Enforcement

1. Manage the micro-services Life
Cycle
2. Migration algorithm that adapts
if the far-edge resource degrades
or moves to the far-edge a micro-
service

1. In progress

2. In progress

Zero-touch
configuration and
application
management
(predict drones’
availability)

Predict and describe infrastructure
resources and implement
automated corrective measures.

In Progress

AI-Based
application profile

Predicting Application Behaviour In Progress

AI-Based resource
profile

Describe the resources of the
infrastructure

In Progress

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 60

5 UC3
5.1 Use Case Description

UC3 focuses on advancing our understanding of galaxy evolution across cosmic time through the processing and

analysis of large-scale 3D astronomical data cubes generated via Integral Field Spectroscopy (IFS). These data

cubes are sourced from advanced instruments, including MEGARA at the 10.4 m Gran Telescopio de Canarias,

MUSE at the Very Large Telescope, and MaNGA at the 2.5 m Sloan Telescope. Combining spatial and spectral

information, the data cubes provide critical insights into stellar kinematics, population characteristics such as age

and metallicity, and the underlying processes driving galaxy formation. A representative example involves the

analysis of the nearby galaxy UGC 10205, where MEGARA data cubes are processed to map continuum emission

and fit spectra using Full-Spectrum Fitting techniques. UC3 addresses significant computational challenges,

including the management of vast data volumes, orchestration of complex data pipelines, and assurance of

robust system availability. These issues often exceed the capabilities of traditional standalone systems,

necessitating a more scalable and distributed approach.

5.1.1 Use Case Objectives

UC3 aims to leverage the AC3 framework to establish a scalable and distributed infrastructure for processing

large-scale astronomical data, while enhancing resource efficiency and supporting cutting-edge research into

galaxy evolution. The specific objectives are as follows:

• Achieve a minimum 50% reduction in processing time for 5GB data cubes compared to standalone nodes

by integrating cloud and edge resources, ensuring efficient handling of hundreds of terabytes of

astronomical data.

• Ensure 100% system reliability to support uninterrupted research, mitigating the risk of downtime during

data processing and analysis workflows.

• Utilize containerized microservices with spectral analysis tools, including pPXF, STECKMAP, and

STARLIGHT, to extract key parameters such as stellar velocity, metallicity, and higher-order kinematic

moments like skewness and kurtosis, advancing insights into galaxy evolution.

• Deploy the UC3 testbed via the CECCM framework across OpenShift clusters with cross-cluster

networking via the AC3 network operator, enabling dynamic task distribution, zero-touch deployment,

and AI-driven resource optimization.

• Enhance resource management through parallel processing and container orchestration, minimizing

memory and CPU consumption while maintaining scalability.

• Establish a benchmark for large-scale astronomical analysis, led by UCM and RHT, to empower the

scientific community in accelerating discoveries and fully harnessing the capabilities of modern

telescopes.

5.1.2 UC3 Stakeholders

5.1.2.1 Users / Astronomers

The primary beneficiaries and users of the deployed UC3 application are the astronomers. They will experience

an improved and simplified workflow as the application allows them to more efficiently process astronomical

data of varying instruments, and to effectively gather and analyse results from the various processing

applications. By providing a cohesive environment for managing data acquired from a variety of astronomical

instruments, the system directly supports their research objectives and accelerates their analytical processes.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 61

5.1.2.2 Application Developers / DevOps

Application developers are responsible for building the UC3 application. This involves providing the necessary

wrapping for the three specialised astronomy processing applications (Starlight, PPXF, and Steckmap). Their work

focuses on developing the UC3 application to handle the efficient ingestion of astronomical data and the

structured management of the processed outputs from these astronomy applications.

The DevOps team would deploy the application and would also stand to gain significant advantages through

reduced operational workload. The integrated LCM system, which provides zero-touch management, automates

many of the routine and complex tasks associated with deploying, scaling, and maintaining the application. The

result is a substantial reduction in operational burden, allowing the DevOps team to allocate their expertise to

more strategic initiatives rather than day-to-day management.

5.1.2.3 Infrastructure Provider

The Infrastructure Provider will be responsible for integrating and offering the CECCM. This involves the technical

work of assembling and deploying the various components that constitute the CECCM, such as Maestro, the OSR,

the Network Operator, and data connectors. They ensure the CECCM is operational and available to the

Application Developers / DevOps team for deploying and managing their applications across the federated cloud-

edge environment.

5.2 Use Case Architecture

To realise the vision of UC3, we have designed both an application and a testbed that enables scalable,

distributed processing of large-scale astronomical datasets while leveraging the AC3 framework’s advanced

orchestration and resource management capabilities. The architecture is tailored to address the computational

challenges of handling vast datasets from IFS instruments such as MEGARA, MUSE, and MaNGA, ensuring

efficient data ingestion, processing, and analysis across a federated cloud-edge infrastructure. The application is

structured into two core components, the Orchestrator and the Processor, designed as an event-based system

to support scalability and loose coupling.

For instance, the AC3 Network Operator is implemented to establish and dynamically manage connectivity

between these K8s clusters, creating a cohesive virtual application network that allows services and workloads

to communicate seamlessly across physical infrastructure boundaries. Furthermore, Maestro, functioning as the

LCM platform, orchestrates the deployment of the application by interpreting the AppD generated by the OSR

and generating the necessary K8s resource descriptors. Maestro also adapts the application's execution through

capabilities such as vertical resource autoscaling, horizontal pod autoscaling, or migration, based on insights from

AI model recommendations. This comprehensive architecture not only handles the processing of vast astronomy

datasets but also enhances system reliability and reduces processing times through distributed computing and

AI-driven lifecycle management.

5.2.1 Use Case Application

Professional telescopes, equipped with large mirrors, are designed to collect massive amounts of light from

various celestial sources. These mirrors are responsible for redirecting and focusing the incoming light towards

the detectors, which can count the number of photons falling on each part of the detector. Through a digital-to-

analogue conversion (DAC) system, these analogue signals are converted into digital signals, which facilitates

data manipulation. Among the digital data produced by the telescopes are data cubes, which are used in our UC.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 62

Core to the UC application are the pre-existing astronomy analysis applications (Starlight, PPXf, Steckmap) that

are used today by the astronomers at UCM. These applications are heterogeneous, with a mix of off-the-shelf

and custom-built software, built on differing computing architectures with varying underlying requirements for

execution. To make these applications operate in a scalable way and to be managed by the AC3 architecture, the

applications have been containerized and made deployable on K8s.

The application is split into 2 core parts, the Orchestrator and the Processor. The Orchestrator is responsible for

ingesting the observation data batch and splitting it into smaller chunks for parallel analysis by the Processors.

The Processor then utilises the appropriate analysis software to execute the data analysis and returns the results

to the Orchestrator for correlation. We have designed the application as an event-based system to support

scalability and loose coupling of the components. This allows us to scale the number of Processors in a simple

way, and to also distribute Processors across a federated infrastructure.

Figure 30. UC3 Application Architecture Orchestrator

As illustrated by Figure 30, the orchestrator contains 2 core components, the Event Generator and the Results

Processor. The Event Generator monitors the local data storage location waiting for input data and configuration

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 63

files, detailing the data batch type as well as some analysis processing parameters. The data is then split into sub-

batches of a fixed size (based on configuration options). The data and config files are then wrapped in an event

and dispatched to the processing queue in the messaging bus.

In this UC, we have selected RabbitMQ as the messaging broker, using the AMQP messaging protocol. Here we

have defined 2 queues, one for data processing payloads and the other for results coordination.

5.2.1.1 Processor

The processor is the heart of the UC3 application and contains several critical components. First and foremost

are the Data Analysis applications themselves. Starlight, pPXF and Steckmap. These applications are effectively

off-the-shelf components, which introduce the challenges of varying architectures, features, and execution

models. For instance, Starlight is a binary executable built in Fortran, which executes a single batch per execution

of the application. In this situation, we need to build adaptation logic to enable us to trigger the application

execution remotely, in a repeatable and scalable way. We currently have full support for Starlight execution,

while pPXF support is currently in development with Steckmap to follow shortly.

The Receiver component is responsible for listening for events, unpacking the payloads and routing the data
batch to the appropriate processor application. Routing is based on the event type, where configuration and
observation data are delivered to the appropriate data staging location and the application execution is
triggered. The receiver also ensures that the Processor does not attempt to process multiple batches of different
types concurrently, to mitigate performance issues and ensure the predictability of the processing time. Once
processing has completed, the receiver is notified and is free to begin processing the next batch.

The Watcher monitors the output data, packages this into result events, and dispatches them to the appropriate
queue for the Orchestrator to correlate.

5.2.2 UC3 Testbed – Hardware and Software

The UC Testbed, illustrated in Figure 31, is composed of applications and components distributed across multiple

K8s clusters, deployed in different data centres and cloud environments. This architecture facilitates multi-site

deployments, resource scaling, and advanced monitoring capabilities across platforms.

The testbed consists of three core environments: the Astronomy Lab, the LCM Cluster, and the UC Application

Clusters. Within the Astronomy Lab we include the telescopes themselves, which are the source of the data

observations. These instruments capture light from distant astronomical objects and channel it through precision

optics to photon-sensitive detectors. The resulting signals, initially analogue, are digitised via DAC systems to

enable further computational processing. A key output of this process is the generation of data cubes, which are

central to our UC. Also, within the Astronomy Lab is a K8s-based environment running Python scripts for data

manipulation and processing.

The LCM Cluster hosts the Maestro orchestration system, with the presence of a K8s cluster currently under

verification. The UC Application Clusters feature a dual-cluster deployment supporting multi-cluster operations

for application scalability.

In the Application clusters, the primary environment is an OpenShift-based deployment platform where

applications are initially provisioned and tested. A secondary OpenShift cluster complements it, enabling multi-

cluster deployment scenarios to improve resilience and scalability. These clusters work together to simulate real-

world distributed systems, enabling dynamic microservice orchestration and lifecycle management.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 64

5.2.2.1 Infrastructure Details

Compute Resources per Application Cluster:

• CPU: 24 vCores

• Memory: 64 GB RAM

• Storage: 200 GB SSD

Monitoring and Management Tools:

• Prometheus Operator for metrics collection and observability

• UC3 Application deployed across OpenShift clusters

• Maestro as a core orchestrator

• Advanced Cluster Management (ACM) Operator for centralized governance

• Multi-Cluster Scheduler for efficient workload placement

• Network Operator for network automation and policy enforcement

Multi-Cluster Control Plane

The multi-cluster control plane is built on a single-node OpenShift cluster that acts as the management hub. This

control plane serves as the central, unified layer responsible for orchestrating, governing, and monitoring all

resources and applications across the distributed testbed environments. It integrates key operators to oversee

and coordinate critical functions, including application scheduling, comprehensive observability, and intricate

network configuration across multi-site deployments.

By leveraging OpenShift, Prometheus, and advanced orchestration tools, this architecture supports scalable,

observable, and resilient deployments tailored to microservice-based applications in a distributed, multi-cluster

environment.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 65

Figure 31. UC3 Infrastructure / AC3 Component Integration

5.3 Component Integration Design

As shown in Figure 32, there are several key AC3 components that we integrate with the UC3 application in order

to demonstrate the collective benefit of the AC3 architecture. In terms of Data Management, the application

leverages the EDC Data Connector to manage the seamless transfer of large volumes of galaxy observation data

from the astronomer's lab environment to the processing application. The data source is also registered and

described in the Piveau catalogue for discovery.

The relevant application and resource usage metrics are exposed to the monitoring framework via the

Prometheus collector deployed in each application cluster. These metrics are for training the ML models as part

of the application and resource profiling, as well as for inference to trigger intelligent Lifecycle Management

actions.

In the role of LCM, we have used the Maestro orchestrator from UBITECH. Maestro is responsible for the
deployment of the application as well as enforcing application runtime decisions based on the AI model
recommendations. Specifically, Maestro interprets the AppD generated by the OSR for our data processing
application and generates the K8s-based LMS resource descriptors required for deployment on the K8s LMS.
Maestro will also adapt the execution of the application (e.g., executing vertical resource autoscaling, horizontal
pod autoscaling, or migration) based on the output of the resource/application ML models.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 66

The Compute LMS utilised in this UC is K8s. Specifically, we employ a mix of OpenShift and K8s for individual

compute clusters as well as an additional multi-cluster control plane in the form of ACM and a multi-cluster

scheduler. Maestro will generate the multi-cluster scheduler manifests that allow the scheduling and

deployment of the application across multiple clusters.

Finally, to ensure that any potential deployment or scaling of the application across multiple clusters maintains

connectivity between components, we leverage the Network Programmability operator developed in WP4. The

operator can be instructed to create new Layer 7 tunnels between applications deployed on different clusters

Figure 32. UC3 / AC3 Component Integration – How UC3 leverages the components developed in AC3

The UC3 Application Onboarding diagram (see Figure 33) outlines the process for deploying applications within

the system. It begins with the user specifying the application details in a JSON format via the GUI, part of the

Application Gateway. The GUI forwards service details to the Service Catalogue, which can also be leveraged by

the user to select pre-existing services to use in their application. The GUI also sends the application details to

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 67

the App Gateway, which forwards them to the OSR to be translated into a machine-readable format called the

Resource Description Framework (RDF) which is used to represent and exchange graph data. The application

details are then sent to the application gateway and consolidated into the final AppD. The AppD is then included

in the service catalogue and sent to the LCM, which coordinates the deployment of the application on the

testbeds.

Figure 33. UC3 Application Onboarding Pipeline

The UC3 Processing Workflow diagram (see Figure 34) illustrates the data processing pipeline for UC3. Astronomy

data from the source is first saved to the UCM Ionos Simple Storage Service (S3) storage bucket. The UCM

Provider Connector transfers this data to the Red Hat Consumer Connector, which stores it in the Red Hat S3

storage bucket. The UC3 Orchestrator watches for new data and retrieves results as needed, coordinating with

RabbitMQ to send batch data to the UC3 Processors for computation. Processed results are then stored back in

Red Hat S3 and transferred to UCM Ionos S3 for final storage. This sequence ensures efficient data handling and

processing, leveraging the work/event dispatching model central to our architecture.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 68

Figure 34. UC3 Data Processing Pipeline

The UC3 Monitoring diagram (see Figure 35) details the runtime monitoring and resource management

mechanisms in place. The UC3 Orchestrator, RabbitMQ, and processors are the core components responsible for

preparing and processing the data. As such, this process must be monitored to ensure KPIs are met and resource

utilisation is efficient. Prometheus monitors queue length to gauge workload demands, while the UC3 Processors

are monitored for CPU and RAM usage. These metrics are collected and fed into the Monitoring Framework,

which informs the App and Resource Profiles. The LCM leverages this data to make informed decisions, triggering

scaling or migration actions to maintain system performance and resource efficiency. This monitoring process

ensures that the system can dynamically adapt to varying operational conditions, supporting the overall stability

of the UC.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 69

Figure 35. UC3 Monitoring Sequence Diagram

5.4 Component Integration Status

5.4.1 Application Interface

The UC3 application GUI shown in Figure 36 provides users with a structured view of the astronomy data batches

stored in the S3 buckets, facilitating the management and monitoring of the batch processing workflow executed

by the UC. The bucket directory structure is as follows:

• Top-Level Directory (/batch_name_date): Displayed in the application UI as a collapsible folder, labelled

with the batch identifier and date (e.g., batch_001_2025-04-01). This folder groups all data related to a

specific batch, allowing users to expand it and view its contents.

• Status file (/batch_name_date/status): The status file details the list of files, the batch’s state (waiting,

currently processing, finished), along with the start time, completion time, and duration.

• Config Subdirectory (/batch_name_date/config/): The config subdirectory contains a configuration file

which provides parameters used by the processing applications to correctly process each batch, these

can be viewed or downloaded by users to verify the batch parameters.

• Input Data Subdirectory (/batch_name_date/input_data/): The input data subdirectory lists the

astronomy data files to be processed. Users can view these files in the UI or download them to inspect

the raw data before processing begins.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 70

• Results Data Subdirectory (/batch_name_date/results_data/): The results subdirectory contains the

processed data generated by the astronomy processing applications such as Starlight or PPXF.

Figure 36. S3 Bucket File Structure

5.4.2 Data Management and Connectors

5.4.2.1 Piveau catalogue

The Piveau Catalogue, comprising both its data and service components, supports the management and

accessibility of astronomy datasets for the processing applications. The data catalogue is designed to store key

metadata for these datasets, including attributes such as dataset name, description, ownership details, and

applicable usage licenses, alongside unique asset IDs. As part of the ongoing development, a sample astronomy

dataset has been successfully integrated into the data catalogue. However, connector endpoints, which are

essential for enabling data transfer, are not yet included within the data catalogue, and the corresponding

connector has not been integrated into the service catalogue. At this stage, the system is not yet operational for

users. Once fully implemented, the catalogue will allow users to negotiate access agreements directly with data

providers, utilising their own consumer-side data connectors to secure permissions for downloading and using

datasets in accordance with the specified policies and contract.

To realise this functionality, subsequent development phases will prioritise the integration of connectors into

the service catalogue. This process will involve embedding critical technical metadata, including required

environment variables, exposed ports, connector names, descriptions, minimum computing resource

requirements, and references to container images. Upon completion, this integration will empower application

developers to select, configure, and deploy the appropriate connectors necessary for seamless data transfer to

or from their applications. These enhancements will ensure robust interoperability between the Piveau

Catalogue and UC3 applications, supporting the broader objective of establishing a scalable, efficient, and user-

centric data management framework within the research ecosystem. The system remains under active

development and is not yet deployed for end-user utilisation.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 71

5.4.2.2 Data type and examples (.fits)

The data used in this UC is produced by IFS instruments, which generate astronomical data in the form of three-

dimensional data cubes. These cubes combine spatial and spectral information, capturing information from

contiguous regions of the sky. Each data cube consists of two spatial dimensions, representing the x and y

coordinates on the sky, and one spectral dimension, representing the wavelength. This format allows

astronomers to analyse the spatial distribution of various spectral features across an observed field, providing

detailed insights into the physical and chemical properties of celestial objects. By examining the light from

different regions within the data cube, researchers can study the composition, kinematics, and evolution of

galaxies, stars, and other astronomical phenomena with high precision. Specifically, we will focus on observations

of galaxies.

These data cubes are stored in the Flexible Image Transport System (FITS) format, the standard data format used

in astronomy. FITS files are designed to store, transmit, and manipulate scientific data, particularly images and

spectra. Each FITS file consists of a primary header and data unit (HDU), which contains metadata describing the

data, followed by one or more extensions that store the actual data. This format supports multi-dimensional

data arrays, making it ideal for storing the complex three-dimensional data cubes produced by integral field

spectroscopy. FITS files are highly versatile and can include additional information such as calibration data,

observational parameters, and processing history, ensuring that all necessary context is preserved for accurate

data analysis. By using the FITS format, we ensure compatibility with a wide range of astronomical software and

facilitate efficient data sharing and collaboration within the research community.

Our UC leverages data from three different IFS instruments: MEGARA [7], MaNGA [8], and MUSE [9].

• MEGARA: MEGARA is an optical Integral-Field Unit and Multi-Object Spectrograph designed for the Gran

Telescopio Canarias. It provides high-resolution spectroscopy data, which is crucial for detailed studies

of stellar populations and kinematics within galaxies. The data cubes from MEGARA typically have

dimensions of 40 × 43 × 4300, resulting in 1720 spectra per cube. Each MEGARA data cube weights

approximately 62 MB, with the total volume of MEGARA data amounting to 7.1 GB

• MaNGA: Part of the Sloan Digital Sky Survey, MaNGA (Mapping Nearby Galaxies at APO) obtains spectra

across the entire face of target galaxies using custom-designed fiber bundles. MaNGA's goal is to

understand the life history of present-day galaxies by providing two-dimensional maps of various stellar

and ionized gas properties. The data cubes from MaNGA typically have dimensions of 74 × 74 × 6732,

yielding 5476 spectra per cube. However, these dimensions can vary for different galaxy observations,

and the sizes provided are indicative. The minimum and maximum sizes of the full data-cubes are 133

MB and 757 MB, respectively, with a total volume of approximately 4.23 TB.

• MUSE: The Multi Unit Spectroscopic Explorer (MUSE) is a panoramic integral-field spectrograph

operating at the Very Large Telescope (VLT) of the European Southern Observatory. MUSE combines a

wide field of view with improved spatial resolution provided by adaptive optics, making it a powerful

tool for discovering and studying faint and distant astronomical objects. The data cubes from MUSE

typically have dimensions of 319 × 320 × 3721, equating to 102080 spectra per cube. Similar to MaNGA,

the dimensions of MUSE data cubes can vary depending on the specific observations of different galaxies,

and the sizes mentioned are approximate. The minimum and maximum sizes of the full data-cubes are

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 72

2.3 GB and 28 GB in .gzip format, and 2.9 GB and 32.6 GB in FITS format, with a total volume of

approximately 3.2 TB for the files in .gzip format.

The data from these instruments vary in size and dimensions due to the different fields of view each instrument

covers. This variability reflects the diverse observational capabilities and scientific goals of each instrument,

highlighting the need to adapt existing astronomical software tools to be user-friendly for data from different

instruments and telescopes. Example .fits data files are shown in Figure 37 and Figure 38.

Figure 37. Example .fits data Figure 38. MEGARA Data-cubes as .fits file

batches

5.4.2.3 EDC S3 Extended Connectors Developed by Ionos

To enable seamless data transfer between the UCM and the processing applications deployed on the UC3

infrastructure, UC3 leverages the EDC S3 Data Connector extensions developed by IONOS. These EDC connector

extensions facilitate bi-directional data exchange between S3 buckets, ensuring efficient and secure data flows.

They incorporate data governance through predefined policies and contracts, which must be negotiated prior to

initiating data transfers, thereby ensuring compliance and control over data usage.

The EDC S3 extensions are designed to comply with industry-standard protocols for secure cloud storage,

enhancing interoperability with diverse S3-compatible systems, and enabling integration with multiple project

testbeds or external infrastructures.

Within the UC3 workflow, these connectors serve as a vital link between data ingestion and processing. They

transfer astronomy data from the UCM S3 bucket to the RHT S3 bucket for batching by the Orchestrator, while

their bi-directional capability supports returning processed outputs to UCM.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 73

S3 Buckets to Store Data

S3 buckets have been created on the Ionos infrastructure by UCM and RHT to facilitate the storage, retrieval,

and transferring of data by the connectors. Each bucket must be configured to allow the other parties connector

read and write access by adding the Ionos user ID as a grantee in the bucket's Access Control List (ACL). There

are several keys and endpoints provided by Ionos which must be included in the connectors configuration file or

passed in as environment variables to ensure proper communication and access to the S3 bucket.

Deployment

The deployment of the EDC S3 Extended Connectors for UC3 is executed through a series of technical steps to

ensure seamless integration with the OpenShift clusters on IONOS and Arsys infrastructures. Both the UCM

provider and RHT consumer connectors are deployed as containerized applications, leveraging Docker images

and OpenShift’s K8s orchestration for scalability and reliability.

Each connector is deployed on an OpenShift cluster hosted on either the IONOS or Arsys testbeds. They use

custom built Docker images which are pulled from a quay.io repository and deployed using K8s deployment

manifests, while the connector’s configuration is mounted as ConfigMaps containing the respective

config.properties files, which include the IONOS S3 credentials:

edc.ionos.access.key=
edc.ionos.secret.key=
edc.ionos.token=
edc.ionos.endpoint.region=eu-central-2

These are injected as environment variables via the JAVA_TOOL_OPTIONS flag to ensure the connectors can

access the corresponding S3 buckets.

-Dedc.fs.config=/app/resources/config.properties

A Hashicorp Vault server is deployed on the OpenShift testbeds alongside the connectors to manage temporary

keys generated by the IonosS3Provisioner during the data transfer process and is deployed by both RHT and UCM

with the details of each deployment being used in the corresponding connectors configuration:

edc.vault.hashicorp.url=http://vault:8200
edc.vault.hashicorp.token=myroot
edc.vault.hashicorp.timeout.seconds=30

Workflow

The data transfer process begins with preparing the necessary JSON payloads to define the asset, policy, contract,

and transfer request. These payloads are used to interact with the RHT consumer connector management API,

which communicates with the UCM provider connector to facilitate the data transfer. The RHT consumer

connector exposes its management API, which is accessible for issuing curl commands. The UCM provider

connector responds to these requests to provide the data from the UCM bucket, and vice versa for the results

transfer.

First, an asset must be defined on the UCM provider side to represent the astronomy data in the uc3-provider

S3 bucket. A JSON payload, “asset.json”, is created to register this asset before being sent to the UCM provider’s

management API using a curl command:

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 74

{
"@context": {"edc": "https://w3id.org/edc/v0.0.1/ns/"},
"@id": "asset-1",
"properties": {

"name": "astronomy-data",
"type": "IonosS3",
"bucketName": "uc3-provider",
"keyName": "astronomy-data.txt"

}
}

curl -X POST "http://provider:8282/management/v3/assets" \
-H "Content-Type: application/json" \
-H "X-API-Key: password" \

-d @asset.json

A policy must then be defined on the UCM provider side to govern access to the astronomy data. A JSON payload,

“policy.json”, is created to define a policy that permits usage of the asset:

{
 "@context": {
 "edc": "https://w3id.org/edc/v0.0.1/ns/",
 "odrl": "http://www.w3.org/ns/odrl/2/"
 },
 "@id": "policy-1",
 "policy": {
 "@type": "odrl:Set",
 "odrl:assigner": {
 "@id": "provider"
 },
 "odrl:target": {
 "@id": "asset-1"
 },
 "odrl:permission": [],
 "odrl:prohibition": [],
 "odrl:obligation": []
 }
}

curl -X POST "http://provider:8282/management/v3/policydefinitions" \
-H "Content-Type: application/json" \
-H "X-API-Key: password" \
-d @policy.json

Next, a contract definition is created to govern the data transfer. A JSON payload, “contract.json”, is prepared to

define the contract terms, linking the asset to a policy that permits access:

{
 "@context": {

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/management/v3/assets
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://provider:8282/management/v3/policydefinitions

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 75

 "edc": "https://w3id.org/edc/v0.0.1/ns/"
 },
 "@id": "contract-1",
 "accessPolicyId": "policy-1",
 "contractPolicyId": "policy-1"

 }

curl -X POST "http://provider:8282/management/v3/contractdefinitions" \
-H "Content-Type: application/json" \
-H "X-API-Key: password" \
-d @contract.json

The RHT consumer then initiates a contract negotiation with the UCM provider. A JSON payload, is created and

used via curl to request access to the asset:

{
 "@context": {
 "@vocab": "https://w3id.org/edc/v0.0.1/ns/",
 "odrl": "http://www.w3.org/ns/odrl/2/"
 },
 "@type": "NegotiationInitiateRequestDto",
 "counterPartyAddress": "http://provider:8282/protocol",
 "protocol": "dataspace-protocol-http",
 "offer": {
 "offerId":
"Y29udHJhY3QtMQ==:YXNzZXQtMQ==:M2NlZTQ2OTYtNzc2Yi00Y2E0LWJlMWItM2NhMWU3OTg5NDAz"
 },
 "policy": {
 "@id":
"Y29udHJhY3QtMQ==:YXNzZXQtMQ==:M2NlZTQ2OTYtNzc2Yi00Y2E0LWJlMWItM2NhMWU3OTg5NDAz",
 "@type": "odrl:Offer",
 "odrl:assigner": {"@id": "provider"},
 "odrl:target": {"@id": "asset-1"},
 "odrl:permission": [],
 "odrl:prohibition": [],
 "odrl:obligation": []
 }
}

curl -X POST "http://consumer:9192/management/v3/contractnegotiations" \
-H "Content-Type: application/json" \
-H "X-API-Key: password" \
-d @negotiation.json

Once the negotiation is finalized (status FINALIZED), the response provides a contract agreement ID which is used

to initiate the data transfer. A JSON payload, “transfer.json”, is prepared to define the transfer request. The

transfer is initiated by sending this payload to the RHT consumer’s management API:

{

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/management/v3/contractdefinitions
https://w3id.org/edc/v0.0.1/ns/
http://www.w3.org/ns/odrl/2/
http://provider:8282/protocol
http://consumer:9192/management/v3/contractnegotiations

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 76

 "@context": {
 "edc": "https://w3id.org/edc/v0.0.1/ns/"
 },
 "@type": "TransferRequestDto",
 "connectorId": "provider",
 "counterPartyAddress": "http://provider:8282/protocol",
 "protocol": "dataspace-protocol-http",
 "contractId": "76aa024a-ab24-4d22-bce9-a1d12e8a6e2f",
 "assetId": "asset-1",
 "transferType": "IonosS3-PUSH",
 "dataDestination": {
 "type": "IonosS3",
 "storage": "s3.eu-central-2.ionoscloud.com",
 "bucketName": "uc3-consumer",
 "keyName": "asset-1.txt"
 }
}

curl -X POST "http://consumer:9192/management/v3/transferprocesses" \
-H "Content-Type: application/json" \
-H "X-API-Key: password" \

-d @transfer.json

The transfer process transitions through states (INITIAL, PROVISIONING, STARTED, COMPLETED), with the

IonosS3Provisioner generating temporary keys (managed by Vault) to facilitate the S3 transfer. Upon completion,

the astronomy data is available in the uc3-consumer bucket for processing by the RHT Orchestrator.

This workflow ensures that data transfers are executed securely and in compliance with the predefined policies,

leveraging the EDC S3 Extended Connectors’ capabilities within the UC3 environment.

5.4.3 OSR and Application Descriptor

The process of application onboarding begins with the developer interacting through the GUI, where they define

the application’s components, such as microservices, data sources, and policies, by leveraging blueprints from

the Service Catalogue and Data Catalogue. The OSR enhances this abstraction by interpreting these inputs using

ontologies and reasoning techniques (e.g., deduction, induction), and translating them into a machine-readable

format like RDF or OWL that captures semantic relationships and dependencies. The Application Gateway then

consolidates this into a structured AppD (see Annex I: OSR Application Descriptors for the full AppD), which the

AI-based LCM system uses to map to specific technologies, such as K8s manifests or Docker containers.

In our specific UC, however, we are not currently utilising the Application Gateway or the full capabilities of the

OSR as described, as these components have not yet been made available for use within the AC3 environment.

Instead, the AppD has been manually crafted through close collaboration with the developers of the OSR. This

manual process involved defining the application’s components such as microservices, dependencies, and

resource requirements directly with the OSR team, bypassing the automated abstraction layer typically provided

by the GUI of the Application Gateway. While this approach has allowed us to align the descriptor with our needs

https://w3id.org/edc/v0.0.1/ns/
http://provider:8282/protocol
http://consumer:9192/management/v3/transferprocesses

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 77

and the OSR’s semantic reasoning capabilities, it underscores the reliance on future integration of these

components to enable a more automated workflow which will be completed by the final version of UC3.

The AppD will be generated by the OSR through parameters provided by the application developers and is

instrumental in facilitating the automated deployment and lifecycle management of microservices within the

UC3 testbed. It delivers a structured specification of application components, ensuring reproducibility, scalability,

and interoperability across the federated cloud-edge environment. This descriptor is processed by the LCM and

converted within the adaptation and federation layer into K8s manifests, enabling the deployment of

microservices onto the testbed clusters.

The UC3 AppD specifies each microservice essential to the UC application, alongside the resource configurations

necessary for their operation on a cluster. The resources required for this UC include:

• Persistent Volumes

• Service Accounts

• Role bindings

Volumes_configuration:
 - VolumeName: "uc3-pv-volume"

 VolumeType: "PersistentVolume"

Security_configuration:
 - ServiceAccountName: "starlight-sa"
 ApiVersion: "v1"

 Kind: "ServiceAccount"

The microservices outlined in the UC3 AppD are categorized by a cluster affinity property into two deployment

groups, promoting scalability and enabling the migration of certain microservices without impacting others.

These microservice groups are:

Orchestrator:

• Data Connector - The EDC IONOS S3 Extended Consumer Data Connector ensures governance through

contract negotiations with the provider data connector and transfers data from the UCM S3 bucket to

the RHT S3 bucket.

• Orchestrator - Retrieves astronomy data from the RHT S3 bucket, batches it, and forwards it to the event

queue.

• RabbitMQ - The event queue that transmits astronomy data as events to the processor’s event receiver.

- MicroserviceName: "orchestrator"
 Version: "1.0"
 Image: "rayc/ucm-producer"
 ID: "orchestrator"

 ClusterAffinity: "orchestrator"

Processor:

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 78

• Event receiver - Subscribes to the event queue and directs the astronomy data to the appropriate

processing application.

• Starlight - An astronomy application that processes data to provide astronomers with valuable insights

into the properties of the universe.

- MicroserviceName: "starlight"
 Version: "1.0"
 Image: "rayc/ucm-processor"
 ID: "starlight"

 ClusterAffinity: "processor"

5.4.4 LCM

The application LCM functionalities are implemented with the use of MAESTRO service orchestration platform

by UBITECH. The implemented functionalities include a) the deployment of application containers according to

end-user-defined policies using the TMF-based standardised processes of the platform [[10],[11],[12],[13]], and

b) the runtime update of the deployed services based on information received from monitoring and the decisions

produced through the analytics modules. MAESTRO provides a modular framework with well-defined

standardised interfaces for easily adapting to different types of external modules related to: Management of

end-user application requests (i.e., OSR), monitoring, analytics, and decision engines (i.e., AC3 monitoring and

App/Resource profile engines and migration engine). Moreover, for the purpose of AC3 integration needs,

MAESTRO southbound interface is extended to integrate with RedHat’s multi-cluster control plane (i.e., ACM)

and multi-cluster scheduler.

The details about the integration status of MAESTRO with respect to the two core functionalities are provided in

the following subsections.

5.4.4.1 Application Deployment

The Application Gateway and OSR provide a vital abstraction layer that allows the developer to define their

application in a way that is agnostic to the underlying technology, by ultimately generating an AppD (based on

AC3 descriptor model) that can drive the deployment of the application. In order to anchor this to the underlying

technological choice, it is essential to adopt a solution that can effectively translate the descriptor into the

corresponding technology-specific implementation To this end, we have implemented an [AC3 -OSR]-to-

[MAESTRO Exposure] layer translator, that creates the K8s Manifest Files required for composing the MAESTRO

service order according to TMF-641 [11]. As shown in the image below (Figure 39), the role of the application

translator is to read the AC3 AppD file generated by the OSR according to the AC3 descriptor model and create

the full set of the K8s Manifest files that essentially include all the necessary information about the containerised

application components with their access permissions (service.yaml, role base(rb).yaml, service

account(sa).yaml, and persistent volume(pvc).yaml files) as well as their infrastructure deployment parameters

for the components (deployment.yaml files). Specifically, for UC3 and according to the UC3 AppD, there are in

total 12 Manifest files that are created, 5 of which are deployment.yaml files.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 79

Figure 39. Schematic representation of the OSR-to-MAESTRO Exposure translation process, in which the K8S Manifests files

are extracted by the AC3 App Descriptor for each micro-service.

It is noted that thanks to the clearly defined AppD model, the whole translation process can be automated, and

the MAESTRO Service Ordering process can be initiated directly once a valid AppD is received from the AC3 -OSR.

In this case, the creation and submission of the AppD to the MAESTRO LCM has the direct meaning of a

deployment request and can be controlled by the Front-End GUI that provides the initial high-level end-user

requests.

The subsequent step involves ordering the service through RedHat's multi-cluster control plane, ACM. To

efficiently orchestrate application deployments, MAESTRO and ACM employ a sophisticated label-based routing

mechanism to accurately determine the appropriate target cluster, such as, for instance, an OpenShift cluster, a

standard K8s cluster, or a cluster with specialized resources like dedicated CPUs, among others. In essence, labels

can be used to define and identify any cluster characteristic and capability. This enables MAESTRO, in conjunction

with ACM, to intelligently distribute application deployments across the entire cluster continuum, based on the

specific requirements and characteristics of each microservice of the application. This determination is

performed by retrieving location-specific labels through metadata fields exposed by the MAESTRO TM Forum

(TMF) APIs. Once the appropriate cluster target is identified, MAESTRO proceeds to transform the standard K8s

resource definitions into specialized “CustomManifestWork” resources, fully compatible with RedHat’s ACM

Hub. These custom resources encapsulate the detailed deployment instructions required by the control plane to

effectively manage multi-cluster deployments. Deployment requests generated by this translation process are

subsequently dispatched to their designated clusters via RedHat's ACM Hub, ensuring a centralized and

streamlined deployment procedure.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 80

The overall workflow described above is depicted below in Figure 40. It begins with the end user, who provides

the AppD (left side of the diagram). The Application Translator then generates the corresponding K8s manifest

files and pushes them to the AC3 registry. Following this, a CI/CD pipeline is triggered to activate the Request

Generator mechanism (optionally, it may also invoke the Package Generator mechanism). The Request

Generator builds the complete order according to the TMF service order standard and also enriches the metadata

field with labels to define the application needs (per service). These labels are subsequently used by ACM to

distribute the application deployment intelligently across the clusters, as explained previously. Finally, the

MAESTRO Service Engine is initiated in order to transform the K8s Manifest files to the proper resources, namely,

CustomManifestWork resources, and to dispatch the request to the ACM Hub. In the last stage of the process,

the ACM hub forwards the deployments to the edge site clusters. Figure 41 presents a UC3-specific example of

the label-based process for creating the CustomManifestWork.

Figure 40. Process workflow for the deployment of an AC application request from the OSR translation point to the

interfacing with ACM

Figure 41. Schematic representation of the CustomManifestWork creation from the Manifest files and the combination of

cluster metadata using a cluster labelling scheme.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 81

5.4.4.2 Application Adaptation

MAESTRO is capable of integrating monitoring systems into its process and orchestrating feedback loops,

enabling continuous LCM for each deployment. This ensures visibility, operational reliability, and efficient

resource management throughout the service lifecycle.

It is noted that at the time of editing this deliverable, the interconnections between the components of the

different AC3 layers, as well as the integration steps have been defined, as shown in Figure 42 but the integration

is not yet complete, since a) the MAESTRO platform runtime processes are currently updated to be able to handle

custom metrics in a modular and well defined method) while offering standardised connection interfaces to the

monitoring modules, and b) the AC3 decision engines for the App and Resource profile in WP3 and WP4 require

to be finalised and adjusted to the platform requirements. The work is planned for the second phase of the

integration process, following the UC3 deployment phase.

Diving deeper into the LCM aspect of this specific UC, Figure 42 presents the control plane architecture, which

has been designed to manage the complete lifecycle of applications across the distributed edge computing

environment. Based on the three main layers of AC3, the process begins at the upper layer (namely Application

Composition and onboarding), where the end user includes in their request the SLA metrics as part of the

application specifications. The App translator then will a) create the proper HPA resources and b) dispatches both

the SLA metrics and the Horizontal Pod Autoscaler (HPA) resources to MAESTRO. Subsequently, MAESTRO

updates the External Metrics API and Custom Metrics API of each cluster to enable the provisioning of custom

metrics for any HPA resource. To support this, MAESTRO is integrated with Prometheus, which is responsible for

collecting and retrieving custom metrics generated by the AC3 AI LCM algorithms and

For each new custom metric, MAESTRO dynamically creates a ConfigMap that defines how the metric should be

exposed to the K8s Custom Metrics or External Metrics APIs. As a result, HPA controllers within the clusters can

retrieve these metrics and act upon them, enabling continuous and efficient intra-cluster lifecycle management.

Last but not least, it is important to note that end users can continuously monitor the status of their applications

along with the associated metrics, and they are able to update the initial deployment request at any time, for

example, by modifying the metrics that drive autoscaling or adjusting the initial resource limit requests for each

service. This architecture effectively extends the default K8s autoscaling mechanism, which is traditionally

limited to CPU and memory, by introducing a dynamic, SLA-aware autoscaling strategy driven by external and

application-specific metrics.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 82

Figure 42. The MAESTRO LCM architecture adapted to the AC3 architecture

Figure 43 illustrates in detail how the custom metric exposure process works and how the AC3 AI LCM mechanism

can inject its metrics into the system, enabling the creation of closed-loop adaptation systems, utilizing HPA

resources, for each deployment.

In detail:

 1. The user initiates a request to deploy an application, specifying the custom metric that should guide the
LCM logic.

 2. The MAESTRO creates a) the Prometheus adapter ConfigMaps and b) the HPA resources, that map each
deployment with each custom metric. These resources are then deployed to the relevant clusters by the ACM
scheduler. The Prometheus Adapter ConfigMap defines how the adapter will translate those metrics into K8s-
readable custom metrics. The key config values there are:

 a. “SeriesQuery”: Specifies which metric series should the adapter query from in Prometheus

 b. “metricsQuery”: Defines how to aggregate or process the data (avg, sum etc.)

 c. “name”: Sets the name what will be exposed the custom metric via K8s Metrics or External API.

 3. Prometheus collects those metrics from AI LCM mechanisms.

 4. Prometheus Adapter queries Prometheus using the rules defined in the ConfigMap.

 5. The Prometheus Adapter configures K8s Custom Metrics API (“/apis/custom.metrics.k8s.io”) or External
Metrics API (“/apis/external.metrics.k8s.io”) to exposes the retrieved metrics.

 6. Finally, HPA resources query the K8s metrics API to retrieve the custom metric values and make scaling
decisions based on the thresholds defined by the user during the initial application request.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 83

Figure 43. Custom metric exposure process and metrics injection into the system

5.4.4.3 AI LCM algorithms

In terms of AI-LCM algorithms, at this stage the core focus has been on exploring the most appropriate AI

algorithms to integrate into this UC integration design. In particular, we are focusing on 2 core AI-enabled

approaches under development within the project:

The XAI-enabled auto-scaler ML model, in development in WP4, can predict application QoS violations and use

this to trigger corrective actions. Specifically, it monitors application CPU and RAM usage relative to application

limits and uses this to predict when we need to make interventions. An XAI model also indicates the contribution

of each feature to the prediction (E.g., CPU/RAM), enabling targeted mitigation of the issue. As part of this work,

the Decision Engine utilises vertical autoscaling to increase the CPU or RAM for the application in question.

We are also considering, given the nature of the Astronomy processing application architecture, whether CPU

and RAM provide accurate reflections of workload, given that we are using a work/event dispatching model.

Instead, we are exploring using additional metrics that consider the incoming workload, which may be a better

prediction of potential bottlenecks in the system. For instance, queue length and average batch processing times

should provide a more accurate reflection of the workload.

We are also considering using the same algorithm for predicting QoS violations in order to mitigate the predicted

performance issues via horizontal autoscaling. Using the predictions from the ML model, instead of vertically

autoscaling, we can look to increase the number of Processor Pods in the system, in order to increase concurrent

data processing. This work aims to utilise Maestro and the Horizontal Pod Autoscaling capability within K8s.

Where specific SLA metrics are required by an application, we can convert these to HPA resources to monitor

these SLA and automatically trigger scaling.

Building on this foundation, we are integrating AI-LCM algorithms into the batch processing workflow to further

enhance the scalability of the astronomy data processors. While CPU and RAM usage remain under monitoring,

the work/event dispatching model employed in our UC suggests these metrics may not fully reflect workload

demands. To address this, we are incorporating RabbitMQ queue length as a more robust indicator of system

load. Astronomy data batches are queued in RabbitMQ for processing by the RHT Orchestrator. The resulting

queue length, representing unprocessed batches, is collected and analysed. This data is fed into an XGBoost-

based ML model, which predicts potential performance degradation, such as elevated workload queues.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 84

These predictions are then leveraged to inform scaling decisions through the K8s HPA. When the XGBoost model

anticipates an SLA violation due to excessive queue length, the HPA responds by increasing the number of

processor pods. For example, it might scale from 2 to 4 pods to distribute the workload and accelerate

processing. Conversely, should the queue length fall below a lower threshold, such as 10 batches, the HPA

reduces the pod count to optimise resource utilisation. This AI-driven mechanism ensures that the astronomy

data processors adapt dynamically to workload fluctuations, maintaining performance efficiency while adhering

to SLA commitments.

Finally, we also want to include multi-cluster replication/stateless migration in our UC execution. This would

enable Processor pods with constrained resources or excessive workloads to scale not just locally (within the

same cluster) but also cross-cluster, in order to exploit resource availability in other clusters. Since every

event/batch is discrete, the Processors operate statelessly, so the work in WP3 focused on stateful migration

may not be fully exploitable. However, we are examining whether their work on resource prediction, utilising a

LSTM-based machine learning algorithm could be leveraged to trigger stateless pod migration.

5.4.5 Monitoring

5.4.5.1 Monitoring Framework Integration

To get visibility across our distributed architecture, we require a monitoring solution that can provide real-time

insights, scale across our multi-cluster environment, and support long-term metric retention. This is where our

integration with the monitoring framework devised under WP4, based on Prometheus and Thanos, comes into

play.

In OpenShift, Prometheus is deployed and managed by default using the platform’s built-in Monitoring Operator.

This operator handles both the deployment and ongoing lifecycle of Prometheus, ensuring that it continuously

scrapes metrics from cluster components as well as application-level metrics exposed by workloads running

within the cluster. In a federated cluster environment, Prometheus instances are tailored to focus on local metric

collection. These metrics are then forwarded to a central aggregation point using the remote_write feature,

which allows for efficient grouping and transfer of data.

To enable centralized observability and long-term retention, Prometheus is integrated with Thanos. Each

Prometheus instance is configured with remote_write to push metrics to the Thanos Receiver. This setup allows

Thanos to act as a centralized storage and query layer, sending metrics from all participating sites. As a result,

users gain a unified view of metrics across the entire multi-site deployment, with access to historical data and

advanced querying capabilities through tools like Thanos Querier or Grafana. This architecture not only improves

monitoring consistency across sites but also ensures that valuable metrics are retained and made accessible

beyond the lifespan of any individual Prometheus pod or cluster.

kind: ConfigMap
apiVersion: v1
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
 uid: 186780e5-bf5d-4bed-bde5-621a5635bd71
 resourceVersion: '524193793'

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 85

 creationTimestamp: '2024-03-08T10:40:32Z'
managedFields:
 - manager: hypershift-operator-manager
 operation: Update
 apiVersion: v1
 time: '2025-03-03T12:18:46Z'
 fieldsType: FieldsV1
 fieldsV1:
 'f:data':
 .: {}
 'f:config.yaml': {}
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: http://82.223.13.241:10908/api/v1/receive
 authorization:
 credentials:
 key: token
 name: telemetry-remote-write
 type: Bearer
 queueConfig:
 batchSendDeadline: 1m
 capacity: 30000
 maxBackoff: 256s
 maxSamplesPerSend: 10000
 minBackoff: 1s
 url: https://infogw.api.openshift.com/metrics/v1/receive

 writeRelabelConfigs:

Figure 44. Visual representation of Our monitoring Config with our Thanos URL inserted

OpenShift inherently provides automatic service discovery for Prometheus, which detects and scrapes metrics

from applications and network components, including Skupper. Prometheus collects metrics from K8s services

and pods that are managed by OpenShift, making it easy to monitor the infrastructure and deployed applications.

Prometheus is currently running within OpenShift and actively monitoring metrics for both the cluster and

applications. The Thanos Receiver is properly configured and is successfully aggregating metrics from multiple

clusters. In addition, the RabbitMQ exporter is operational, allowing the collection and visualization of

application-specific metrics. Federation between Prometheus instances is set up, enabling the central

Prometheus instance to collect metrics from edge clusters, thus ensuring centralized monitoring.

5.4.5.2 Monitoring Metrics

Within UC3 there is a range of metrics that we want to leverage the monitoring framework to export. Many of

these fall into the range of metrics defined in D4.1, covering standard metrics such as CPU, RAM, bandwidth, and

latency. However, we are also working to export additional metrics relating to the specific architecture of our

application. In Figure 45 below, we visualise the batch processing time metric and its constituent metrics. In

essence, the queue length of the application is key to understanding the overall load of the entire application

(not just a single processor) and to predicting the future load of each individual processor. We are exploring

http://82.223.13.241:10908/api/v1/receive
https://infogw.api.openshift.com/metrics/v1/receive

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 86

integrating these metrics into the ML algorithms to give more accurate predictions of SLA violations based on

this queue length.

Figure 45. Batch Processing Time based on queue length

5.4.6 Compute LMS

To deliver the functionality of Compute LMS we exploit 2 core technologies, namely OpenShift (K8s) and ACM.

OpenShift provides us with the capability of not just deploying and orchestrating workloads, but with a

comprehensive platform to support resource provisioning such as CPU, RAM, Storage and Networking. OpenShift

is a key component in supporting the scalability and resilience required for the core astronomy processing

application in UC3. This allows the pre-existing processing applications (Starlight, PPXf, Steckmap) to be packaged

as K8s applications, enabling them to be seamlessly and comprehensively managed (deployed, moved, removed,

and scaled). It also provides an application eco-system where additional software components are available and

easily deployable, such as the RabbitMQ message broker utilised as part of this UC. Another advantage of this is

its ability to work in harmony with the AC3 network Operator. Unlike relying solely on OpenShift’s native

operators, the AC3 network operator is specifically designed to expose the application in a way that aligns with

the unique requirements of the UC3 project. OpenShift’s flexibility allows for the smooth deployment and

operation of this network operator without imposing limitations on how external access is managed. This level

of customization is crucial, as it allows the team to maintain control over how the application is accessed across

the network, ensuring that the RabbitMQ queues and Starlight processing endpoints are reachable as needed.

In the context of UC3, we utilise multiple OpenShift clusters to represent federated infrastructures that are

available to the Astronomer (via AC3) to carry out their data processing. Within the OpenShift/K8s ecosystem,

there are additional add-on components that cater to multi-cluster management. In this case, we utilise the

Advanced Cluster Management add-on, based on the Cloud Native Computing Foundation Open Cluster

Management project. ACM helps streamline the management of our multi-cluster setup, ensuring that all

clusters are consistently monitored, maintained, and configured according to the project's needs. In particular,

the workload placement capability of ACM offers us a central control point where we can deploy applications

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 87

across clusters, utilising an expressive set of rules to find the appropriate clusters or target a specific cluster.

Also, the Policy construct allows for consistent and unified governance of the managed clusters, ensuring that

each cluster, including newly added clusters, conforms to the required configuration.

5.4.7 Network LMS

Playing the role of Network LMS within this UC is the AC3 Network Operator developed in WP4. The goal of the

network operator is to establish and manage connectivity between multiple K8s clusters in a dynamic way,

leveraging a range of underlying network technologies. Leveraging the operator allows us to form a cohesive

virtual application network where services and workloads can communicate across physical infrastructure

boundaries.

In our UC testbed, we currently have 1 management cluster (Hub) and 2 application clusters representing
individual infrastructure domains. The Network Operator is installed on the Hub cluster and is responsible for
orchestrating the network configuration required to ensure inter-site connectivity. The operator automates the
setup of our network by managing the lifecycle of connection tokens, distributing secrets, and creating links that
connect edge sites to the central hub.

apiVersion: ac3.redhat.com/v1alpha1
kind: AC3Network
metadata:
name: ray-ac3network
namespace: ac3no
spec:
link:
sourceCluster: "ac3-cluster-2"
targetCluster: "ac3-cluster-1"
sourceNamespace: "sk1"
targetNamespace:
- "sk3"
applications:
- "nginx"
- "rabbitmq"
secretNamespace: "sk1"
secretName: "sk1-token"
secretName2: "sk1-token"

port: 5672

The Network operator establishes a secure communication between clusters, and the central site containing the

network operator generates a token. This token is used by our federated sites. This will enhance the workflow

by automating token distribution and secret management. Once the inter-site links are in place, the operator

maintains these connections and ensures that they are kept in sync as sites scale or update over time.

Applications deployed with the Network Operator are automatically exposed to the virtual application network.

This allows services running on one site to be discovered and accessed from any other site that is linked through

Skupper, a visual representation of which can be seen in Figure 46. The exposure configuration is handled by the

operator, which ensures consistent and reliable cross-cluster communication without requiring manual routing

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 88

rules or service mirroring configurations. This significantly reduces operational overhead and enables multi-site

deployments to be managed in a declarative and scalable way.

User Interface:

Figure 46. Visual representation of Skupper links between namespaces/clusters

One of the key technical challenges in this setup is ensuring proper synchronization between central and cross

cluster sites—especially as updates and configuration changes are made centrally and need to propagate across

the network. This includes both the consistency of routing information and the reliable rollout of service

exposure configurations. Managing traffic flow between multiple edge sites also presents challenges around load

balancing and routing efficiency. As the number of interconnected sites grows, it becomes increasingly important

to monitor how traffic is distributed to avoid bottlenecks or uneven load. In addition, automated failover remains

a core focus, with efforts underway to support seamless rerouting if an inter-site link fails or a node becomes

temporarily unavailable.

The multi-site setup has been successfully deployed and validated, with a reliable interconnection established

between the central and multi-cluster sites. Applications deployed through the Network Operator are correctly

exposed and accessible across the network. Dynamic updates, such as the addition of new sites or the

reconfiguration of existing links, have been tested and confirmed to propagate as expected. The system

demonstrates strong resilience and flexibility, adapting to topology changes during runtime.

5.4.8 Remaining Integration

5.4.8.1 PPXF and STECKMAP Astronomy Software

While the UC3 application is designed to process astronomical data using various tools, including pPXF and

STECKMAP, the complete integration of both software components into the UC3 application's processing

workflow is still pending. This integration is vital to expand the UC3 application's ability to process multiple types

of astronomical data effectively. It will involve ensuring the Orchestrator can correctly identify, configure, and

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 89

dispatch data specifically formatted for each tool, and that their respective outputs are seamlessly handled and

stored. This integration will enable astronomers to leverage the UC3 application for a broader range of data

analysis needs, maximising its utility for diverse astronomical datasets.

5.4.8.2 Finalizing Metrics for Autoscaling Model

While the monitoring framework, using Prometheus and Thanos, collects a broad range of system and

application metrics, the specific metrics vital for the AI-driven autoscaling model still need to be integrated. For

the UC3 application, traditional CPU and RAM usage might not fully capture the workload. As such, we are

focusing on seamlessly integrating RabbitMQ queue length as an indicator of system load alongside average

batch processing and wait times. This involves refining Prometheus configurations to reliably expose these

specific application metrics and ensuring their smooth ingestion by the AI-LCM for both training and real-time

inference. The next step is confirming that the HPA effectively consumes these custom metrics, creating an

adaptation system driven by meaningful workload indicators.

5.4.8.3 AI Algorithms

The critical phase of training the AI algorithms on actual UC3 application data and their subsequent

programmatic integration with the LCM system remains. This requires collecting sufficient, representative

datasets from the UC3 application, particularly data correlating queue length and processing times with

performance degradation. The trained XGBoost model will then need integration within the AI-LCM mechanisms,

ensuring it can process real-time queue length data and generate accurate predictions of impending SLA

violations. The final part of this integration involves establishing the automated pipeline for these predictions to

directly inform and trigger scaling decisions via the K8s HPA, orchestrated by Maestro. This will enable the system

to proactively adjust processor pod counts, ensuring dynamic adaptation to maintain performance efficiency and

SLA compliance.

5.4.8.4 Maestro (LCM)

Maestro is currently running on Ubitech infrastructure and has yet to be deployed onto the AC3 testbed. Another

key outstanding task is updating Maestro's runtime processes to handle custom metrics like the RabbitMQ queue

length to effectively leverage the performance indicators and predictions from the monitoring framework and

AI-LCM algorithms. Furthermore, Maestro must be configured to effectively utilise the outputs from the

application and resource profiling decision engines from WP3 and WP4. These profiles will provide interpreted

metrics and AI predictions to Maestro, driving its scaling and adaptation decisions. The completion of this phase

will allow Maestro to fully orchestrate dynamic runtime updates and autoscaling of deployed services based on

real-time feedback and AI insights.

5.5 UC3 Integration summary
Table 5: UC3 Integration summary

Architecture component Sub-Component Description Integration summary

Application gateway
(GUI)

Allow the application developer to
define its application components
and SLA.

Complete

OSR Allow the generation of the AppD Complete

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 90

Network LMS
Connects the OpenShift clusters
running on the ARS cloud

Complete

Application and resource
management

Monitoring
Monitors application and resource
metrics

In Progress

AI-based LCM
and Decision
Enforcement

1. Manage the micro-services Life
Cycle

2. Horizontal autoscaling

1. In Progress

2. In Progress

Zero Touch Configuration: Predict
and describe infrastructure
resources and implementation of
automated corrective measures.

In Progress

AI-Based
application profile

Predicting application behavior In Progress

AI-Based Resource
Profile

Describe the resources of the
infrastructure

In Progress

Data management

1. Data Provider
connector
2. Catalogue (data)
3. Data
Manipulator

1. Astronomy data goes through
the Data connector
2. Registers with the AC3
Catalogues (Piveau)
3. Manipulate data for input to
Orchestrator

1. Complete

2. Complete

3. Complete

Migration

1. Manages dynamic microservice
migration across cloud and edge.
2. Moves microservices between
clusters based on real-time data.
3. Balances loads and avoids
bottlenecks.

1. Not Started

2. Not Started

3. Not Started

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 91

6 Conclusions

The objective of deliverable D5.2 was to capture the interim status of the work done across tasks T5.1 (AC3

components integration) and T5.2 (Testbed Integration). We believe that, through the detailed account of each

UC application and testbed architectures, UC integration design, as well as the thorough technical description of

the implementation carried out, this intermediate report on integration successfully captures the extensive work

that has been completed towards achieving our goal of a cohesive and highly effective AC3 system.

• In UC1, significant progress has been made in integration of key components such as the Data

Managment and Dat Connectors, Service Catalogue, AppD, OSR and LCM.

• In UC2, significant progress has been made in the core application and application UI, as well as

integration of key components such as the Application Gateway, OSR/AppD and LCM

• In UC3, work is complete/nearing completion on the core application for data orchestration and analysis,

as well as integration of key components such as the Data Connectors, Monitoring Framework and

AppD/OSR, as well as the Compute and Network LMS. Work is actively progressing on LCM and AI

integration.

To finalize the integration across all UCs, further efforts will concentrate on the remaining components:

• For UC1, this primarily involves the full integration of the Application Gateway, LMS Edge/Cloud, the

advanced AI-based LCM, AI-based profiling, Monitoring functionalities, and the initiation of Zero-touch

configuration.

• UC2 will focus on completing the AI-based LCM and Decision Enforcement, Zero-touch configuration for

drone availability, and the AI-based Application and Resource Profiling.

• For UC3, the key remaining tasks include finalizing the Monitoring integration, AI-based LCM, Zero Touch

Configuration, and AI-Based profiles.

These final integration steps, detailed in the respective UC sections, are essential to achieve the complete vision

and capabilities of the CECCM.

As a result of the extensive collaboration between the UC and component owners, we believe a clear path to

realising the AC3 vision is now in place. Based on the strong foundational work described within this report, the

consortium can now progress towards delivering tangible benefits of the CECCM through demonstrations,

experimentation and results within the final phase of the project.

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 92

7 References

[1] AC3 Project, "D5.1 "Initial integration and proofs of concept plan"," 03 February 2025. [Online].

[2] AC3 Project, "D2.4 "Business Analysis of CECC and Use Case Requirements"," 27 May 2024. [Online].

Available: https://ac3-project.eu/wp-content/uploads/2024/07/Final-draft_AC3_Business-analysis-of-

CECC-and-use-case-requirements_22.05.2024_FINAL.pdf

[3] AC3 Project, "D3.3 "Initial Report on Data Management for Applications in CECC"," 28 June 2024. [Online].

Available: https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.3_20240222_v1.0.pdf

[4] AC3 Project, "D4.1 "Initial Report on Mechanisms that Enable Green-Oriented Zero Touch Management

of CECC Resources"," 30 June 2024. [Online]. Available: https://ac3-project.eu/wp-

content/uploads/2024/11/AC3_D4.1_to_be_submitted_annexes.pdf

[5] AC3 Project, "D3.1 "Report on the application LCM in the CEC - Initial"," 2023 December 2023. [Online].

Available: https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.1_v7.pdf

[6] AC3 Project, "D2.3 "Report on technological tools for CECC"," 31 December 2023. [Online]. Available:

https://ac3-project.eu/wp-content/uploads/2024/07/AC3_D2.3_v1.6_version_to_be_submitted.pdf

[7] Gil de Paz, A. et al., “MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting

ready for the telescope”, in Ground-based and Airborne Instrumentation for Astronomy VI, 2016, vol.

9908, Art. no. 99081K. doi:10.1117/12.2231988.

[8] Drory, N. et al., “The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope”, The

Astronomical Journal, vol. 149, no. 2, Art. no. 77, IOP, 2015. doi:10.1088/0004-6256/149/2/77.

[9] Bacon, R. et al., “The MUSE second-generation VLT instrument”, in Ground-based and Airborne

Instrumentation for Astronomy III, 2010, vol. 7735, Art. no. 773508. doi:10.1117/12.856027.

[10] TMForum, “TMF633 Service Catalog Management API v4.0.0”, 2021, Available:

https://www.tmforum.org/resources/standard/tmf633-service-catalog-api-user-guide-v4-0-0/

[11] TMForum, “TMF641 Service Ordering Management API v4.1.1”, 2021, Available:

https://www.tmforum.org/resources/specifications/tmf641-service-ordering-management-api-user-

guide-v4-1-1/

[12] TMForum, “TMF638 Service Inventory Management API v4.0.1”, 2020, Available:

https://www.tmforum.org/resources/specification/tmf638-service-inventory-api-user-guide-v4-0-0/

[13] TMForum, “TMF674 Geographic Site Management API v4.0.1”, 2020, Available:

https://www.tmforum.org/resources/specification/tmf674-geographic-site-management-api-user-

guide-v4-0/

https://ac3-project.eu/wp-content/uploads/2024/07/Final-draft_AC3_Business-analysis-of-CECC-and-use-case-requirements_22.05.2024_FINAL.pdf
https://ac3-project.eu/wp-content/uploads/2024/07/Final-draft_AC3_Business-analysis-of-CECC-and-use-case-requirements_22.05.2024_FINAL.pdf
https://ac3-project.eu/wp-content/uploads/2024/07/Final-draft_AC3_Business-analysis-of-CECC-and-use-case-requirements_22.05.2024_FINAL.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.3_20240222_v1.0.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.3_20240222_v1.0.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D4.1_to_be_submitted_annexes.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D4.1_to_be_submitted_annexes.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D4.1_to_be_submitted_annexes.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.1_v7.pdf
https://ac3-project.eu/wp-content/uploads/2024/11/AC3_D3.1_v7.pdf
https://ac3-project.eu/wp-content/uploads/2024/07/AC3_D2.3_v1.6_version_to_be_submitted.pdf
https://ac3-project.eu/wp-content/uploads/2024/07/AC3_D2.3_v1.6_version_to_be_submitted.pdf
https://www.tmforum.org/resources/standard/tmf633-service-catalog-api-user-guide-v4-0-0/
https://www.tmforum.org/resources/specifications/tmf641-service-ordering-management-api-user-guide-v4-1-1/
https://www.tmforum.org/resources/specifications/tmf641-service-ordering-management-api-user-guide-v4-1-1/
https://www.tmforum.org/resources/specification/tmf638-service-inventory-api-user-guide-v4-0-0/
https://www.tmforum.org/resources/specification/tmf674-geographic-site-management-api-user-guide-v4-0/
https://www.tmforum.org/resources/specification/tmf674-geographic-site-management-api-user-guide-v4-0/

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 93

8 Annex I: OSR Application Descriptors

This Annex provides a view of the complete OSR AppD for each UC.

UC1 OSR Application Descriptor
ApplicationName: "UC1 IoT Data Processing"

Version: "3.0"

Microservices_configuration:

 - MicroserviceName: "edgebroker"

 Version: "0.3"

 Image: "sparkworks/ac3-edge-broker:0.3"

 ID: "edgebroker"

 EnvironmentVariables:

 - Name: "RABBITMQ_HIPE_COMPILE"

 Value: "1"

 - MicroserviceName: "logger"

 Version: "latest"

 Image: "sparkworks/ac3-amqp-http-request-logger:latest"

 ID: "logger"

 Ports:

 - "4000:4000"

 EnvironmentVariables:

 - Name: "HTTP_SERVER_PORT"

 Value: "4000"

 - MicroserviceName: "consumer"

 Version: "latest"

 Image: "sparkworks/ac3-connector-http-http-consumer:latest"

 ID: "consumer"

 Ports:

 - "28180:28180"

 - "28181:28181"

 - "28182:28182"

 - "28183:28183"

 EnvironmentVariables:

 - Name: "WEB_BASE_URL"

 Value: "http://ionos-s1.sparkworks.net"

 - Name: "WEB_HTTP_PORT"

 Value: "28180"

 - Name: "WEB_HTTP_MANAGEMENT_PORT"

http://ionos-s1.sparkworks.net/
http://ionos-s1.sparkworks.net/

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 94

 Value: "28181"

 - Name: "WEB_HTTP_PROTOCOL_PORT"

 Value: "28182"

 - Name: "WEB_HTTP_CONTROL_PORT"

 Value: "28183"

 - Name: "ASSET_NAME"

 Value: "uc1-stream"

 - Name: "PROVIDER_DOMAIN"

 Value: "http://ds.uc1.ac3.sparkworks.net:18182/protocol"

 - MicroserviceName: "edgemapper"

 Version: "0.5"

 Image: "sparkworks/sw-mapper-ac3:0.5"

 ID: "edgemapper"

 Ports:

 - "5026:5026"

 - "8026:8026"

 EnvironmentVariables:

 - Name: "RABBITMQ_PORT"

 Value: "5672"

 - Name: "RABBITMQ_HOST"

 Value: "edgebroker"

 - Name: "RABBITMQ_USERNAME"

 Value: "mapperuc1"

 - Name: "RABBITMQ_PASSWORD"

 Value: "TmU5WmuikTQnDrWkRs7D"

 - Name: "QUEUE_OUT"

 Value: "mapperuc1.mapped"

 - Name: "QUEUE_IN"

 Value: "mapperuc1.data"

 - Name: "QUEUE_COMMANDS"

 Value: "mapperuc1.commands"

 - MicroserviceName: "edgeapplication"

 Version: "0.4"

 Image: "sparkworks/data_manipulator_uc1:0.4"

 ID: "edgeapplication"

 ResourceRequirements:

 Cpu: "4 vCPUs"

 Memory: "8Gi"

 ReplicaCount: "1"

 Ports:

 - "5001:5001"

http://ds.uc1.ac3.sparkworks.net:18182/protocol
http://ds.uc1.ac3.sparkworks.net:18182/protocol

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 95

 EnvironmentVariables:

 - Name: "RABBITMQ_PORT"

 Value: "5672"

 - Name: "RABBITMQ_HOST"

 Value: "edgebroker"

 - Name: "RABBITMQ_USERNAME"

 Value: "ml"

 - Name: "RABBITMQ_PASSWORD"

 Value: "7Iqk7uu1Ot"

 - Name: "QUEUE_OUT"

 Value: "mapperuc1.processed.ml"

 - Name: "QUEUE_IN"

 Value: "mapperuc1.mapped.ml"

 - MicroserviceName: "edgeapplication-2"

 Version: "0.4"

 Image: "sparkworks/data_manipulator_uc1-2:0.4"

 ID: "edgeapplication-2"

 ResourceRequirements:

 Cpu: "4 vCPUs"

 Memory: "8Gi"

 ReplicaCount: "1"

 Ports:

 - "5005:5001"

 EnvironmentVariables:

 - Name: "RABBITMQ_PORT"

 Value: "5672"

 - Name: "RABBITMQ_HOST"

 Value: "edgebroker"

 - Name: "RABBITMQ_USERNAME"

 Value: "ml"

 - Name: "RABBITMQ_PASSWORD"

 Value: "7Iqk7uu1Ot"

 - Name: "QUEUE_OUT"

 Value: "mapperuc1.processed.ml"

 - Name: "QUEUE_IN"

 Value: "mapperuc1.mapped.ml-2"

Global_SLA:

 ServiceAvailability: "99.9%"

 MaxLatency: "500 ms"

 MaxResponseTime: "Low"

 DataThroughput: "High"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 96

UC1 AppD

UC2 OSR Application Descriptor
ApplicationName: "Surveillance System"

Version: "1.0.0"

Microservices_configuration:

 - MicroserviceName: "backend"

 Version: "1.0"

 Image: "capy8ra/ac3-uc2-backend:latest"

 ID: "backend"

 Dependencies:

 - "database"

 ResourceRequirements:

 Cpu: "4 vCPU"

 Memory: "8Gi"

 MicroservicesSLAs:

 ServiceAvailability: "99.9%"

 MaxResponseTime: "Low"

 DataThroughput: "High"

 ReplicaCount: "1"

 EnvironmentVariables:

 - Name: "DJANGO_DEBUG"

 Value: "False"

 - Name: "LOGGING_LEVEL"

 Value: "INFO"

 - Name: "DB_HOST"

 Value: "db"

 - Name: "DB_PORT"

 Value: "5432"

 - Name: "DB_NAME"

 Value: "ac3"

 - Name: "DB_USER"

 Value: "postgres"

 - Name: "DB_PASS"

 Value: "root"

 - Name: "RECAPTCHA_SECRET_KEY"

 Value: "6LfUgiEqAAAAADM04T7V8GNTL6VCvWtW_UJDIx0J"

 apiEndpoint: "http://backend.fingletek.com"

 apiPort: "8000"

 Protocol: "HTTP/REST"

http://backend.fingletek.com/

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 97

 InternetAccess: "true"

 GeographicalArea:

 Region: "Central Cloud"

 LocationType: "cloud"

 - MicroserviceName: "frontend"

 Version: "1.0"

 Image: "capy8ra/ac3-uc2-frontend:latest"

 ID: "frontend"

 Dependencies:

 - "backend"

 - "deepstream"

 ResourceRequirements:

 Cpu: "1 vCPU"

 Memory: "2Gi"

 MicroservicesSLAs:

 ServiceAvailability: "99.9%"

 MaxResponseTime: "Low"

 DataThroughput: "High"

 ReplicaCount: "1"

 EnvironmentVariables:

 - Name: "VITE_USER_SERVICE_URL"

 Value: "http://172.21.16.156:30033/api/v1"

 - Name: "VITE_USER_SERVICE_BASE_URL"

 Value: "http://172.21.16.156:30033"

 - Name: "VITE_REACT_APP_SITE_KEY"

 Value: "6LfUgiEqAAAAAKWzfsVqrlI6YbpXgUZde85ip3z-"

 apiEndpoint: "http://frontend.fingletek.com"

 apiPort: "5173"

 Protocol: "HTTP/REST"

 InternetAccess: "true"

 GeographicalArea:

 Region: "Central Cloud"

 LocationType: "cloud"

 - MicroserviceName: "deepstream"

 Version: "1.1.0"

 Image: "capy8ra/ac3-uc2-ds:28"

 ID: "deepstream"

 Dependencies:

 - "backend"

http://172.21.16.156:30033/api/v1
http://172.21.16.156:30033/
http://frontend.fingletek.com/

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 98

 - "database"

 ResourceRequirements:

 Cpu: "4 vCPUs"

 Memory: "16Gi"

 Storage: "N/A"

 Gpu: "NVIDIA GPU (specific model based on throughput)"

 MicroservicesSLAs:

 ServiceAvailability: "99.9%"

 MaxResponseTime: "Low"

 DataThroughput: "High"

 ReplicaCount: "1"

 EnvironmentVariables:

 - Name: "LOG_LEVEL"

 Value: "INFO"

 - Name: "DB_HOST"

 Value: "db"

 - Name: "DB_PORT"

 Value: "5432"

 - Name: "DB_NAME"

 Value: "ac3"

 - Name: "DB_USER"

 Value: "postgres"

 - Name: "DB_PASSWORD"

 Value: "root"

 - Name: "NO_DISPLAY"

 Value: "1"

 Protocol: "TCP/RTSP"

 InternetAccess: "false"

 GeographicalArea:

 Region: "Edge"

 LocationType: "edge"

 - MicroserviceName: "db"

 Version: "8.1.0"

 Image: "postgres:17"

 ID: "database"

 ResourceRequirements:

 Cpu: "0.2 vCPU"

 Memory: "256MB"

 Storage: "10GB"

 MicroservicesSLAs:

 ServiceAvailability: "99.9%"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 99

 MaxResponseTime: "Low"

 DataThroughput: "High"

 ReplicaCount: "3"

 EnvironmentVariables:

 - Name: "POSTGRES_USER"

 Value: "postgres"

 - Name: "POSTGRES_PASSWORD"

 Value: "root"

 - Name: "POSTGRES_DB"

 Value: "ac3"

 apiEndpoint: "psql://database.fingletek.com"

 apiPort: "5432"

 Protocol: "TCP"

 InternetAccess: "false"

 GeographicalArea:

 Region: "Central Cloud"

 LocationType: "cloud"

Networking_graph:

 - Source: "backend"

 Destination: "db"

 Protocol: "TCP"

 Port: "5432"

 ConnectionSLAs:

 Latency: "Less than 500 ms"

 Availability: "99.9%"

 Bandwidth: "High"

 ErrorRate: "Less than 1%"

 - Source: "frontend"

 Destination: "deepstream"

 Protocol: "TCP"

 Port: "8585"

 ConnectionSLAs:

 Latency: "Less than 500 ms"

 Availability: "99.9%"

 Bandwidth: "High"

 ErrorRate: "Less than 1%"

 - Source: "frontend"

 Destination: "backend"

 Protocol: "TCP"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 100

 Port: "8000"

 ConnectionSLAs:

 Latency: "Less than 500 ms"

 Availability: "99.9%"

 Bandwidth: "High"

 ErrorRate: "Less than 1%"

Global_SLA:

 ServiceAvailability: "99.9%"

 MaxLatency: "500 ms"

 MaxResponseTime: "Low"

 DataThroughput: "High"

UC2 AppD

UC3 OSR Application Descriptor

ApplicationName: "starlight-uc3"

Version: "1.0.0"

Volumes_configuration:

- VolumeName: "uc3-pv-volume"

VolumeType: "PersistentVolume"

StorageClass: "standard"

Capacity: "10Gi"

AccessModes:

- "ReadWriteOnce"

HostPath:

Path: "/mnt/ucmdata"

ClaimName: "uc3-pv-claim"

ClaimSpec:

StorageClassName: "standard"

AccessModes:

- "ReadWriteOnce"

Resources:

Requests:

Storage: "3Gi"

Security_configuration:

- ServiceAccountName: "starlight-sa"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 101

ApiVersion: "v1"

Kind: "ServiceAccount"

Metadata:

Name: "starlight-sa"

- RoleBindingName: "privileged-role"

ApiVersion: "rbac.authorization.k8s.io/v1"

Kind: "RoleBinding"

Metadata:

Name: "privileged-role"

RoleRef:

ApiGroup: "rbac.authorization.k8s.io"

Kind: "ClusterRole"

Name: "system:openshift:scc:privileged"

Subjects:

- Kind: "ServiceAccount"

Name: "starlight-sa"

Microservices_configuration:

- MicroserviceName: "rabbitmq"

Version: "3-management"

Image: "rabbitmq:3-management"

ID: "rabbitmq"

ClusterAffinity: "orchestrator"

Dependencies: []

ResourceRequirements:

Cpu: "0.5 vCPU"

Memory: "1Gi"

MicroservicesSLAs:

ServiceAvailability: "99.9%"

MaxResponseTime: "N/A"

DataThroughput: "Medium"

ReplicaCount: "1"

Ports:

- ContainerPort: "5672"

- ContainerPort: "15672"

EnvironmentVariables:

- Name: "RABBITMQ_DEFAULT_USER"

Value: "guest"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 102

- Name: "RABBITMQ_DEFAULT_PASS"

Value: "guest"

- MicroserviceName: "orchestrator"

Version: "1.0"

Image: "rayc/ucm-producer"

ID: "orchestrator"

ClusterAffinity: "orchestrator"

Dependencies:

- "rabbitmq"

ResourceRequirements:

Cpu: "2 vCPU"

Memory: "4Gi"

MicroservicesSLAs:

ServiceAvailability: "99.9%"

MaxResponseTime: "N/A"

DataThroughput: "High"

ReplicaCount: "1"

ServiceAccountName: "starlight-sa"

SecurityContext:

privileged: true

EnvironmentVariables:

- Name: "RABBITMQ_USER"

Value: "guest"

- Name: "RABBITMQ_PASSWORD"

Value: "guest"

- Name: "RABBITMQ_HOST"

Value: "rabbitmq"

- Name: "RABBITMQ_PORT"

Value: "5672"

- Name: "INPUT_DIR"

Value: "/starlight/data/input"

- Name: "OUTPUT_DIR"

Value: "/starlight/data/output"

- Name: "BATCH_SIZE"

Value: 5

Ports:

- ContainerPort: "5672"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 103

Volumes:

- Name: "uc3-pv-storage"

VolumeSource:

PersistentVolumeClaim:

ClaimName: "uc3-pv-claim"

VolumeMounts:

- Name: "uc3-pv-storage"

MountPath: "/starlight/"

InitContainers:

- Name: "init"

Image: "busybox:1.28"

securityContext:

privileged: true

volumeMounts:

- mountPath: "/starlight/"

name: "uc3-pv-storage"

Command:

- sh

- -c

- |

if [! -d /starlight/data]; then mkdir -p /starlight/data; fi;

if [! -d /starlight/runtime]; then mkdir -p /starlight/runtime; fi;

if [! -d /starlight/runtime/infiles]; then mkdir -p /starlight/runtime/infiles; fi;

if [! -d /starlight/runtime/input]; then mkdir -p /starlight/runtime/input; fi;

if [! -d /starlight/data/input]; then mkdir -p /starlight/data/input; fi;

if [! -d /starlight/data/output]; then mkdir -p /starlight/data/output; fi;

if [! -d /starlight/data/input/processed]; then mkdir -p /starlight/data/input/processed; fi;

if [! -f /starlight/runtime/processlist.txt]; then touch /starlight/runtime/processlist.txt; fi;

- MicroserviceName: "data-connector"

Version: "1.0"

Image: "quay.io/bcapper30/ionos-s3-consumer-env"

ID: "data-connector"

ClusterAffinity: "orchestrator"

Dependencies:

- "orchestrator"

ResourceRequirements:

Cpu: "1 vCPU"

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 104

Memory: "2Gi"

MicroservicesSLAs:

ServiceAvailability: "99.9%"

MaxResponseTime: "N/A"

DataThroughput: "Medium"

ReplicaCount: "1"

EnvironmentVariables:

- Name: "JAVA_TOOL_OPTIONS"

Value: "-Dedc.fs.config=/app/resources/config.properties"

- Name: "EDC_PARTICIPANT_ID"

Value: "consumer"

- Name: "WEB_HTTP_PORT"

Value: "9191"

- Name: "WEB_HTTP_PATH"

Value: "/api"

- Name: "WEB_HTTP_MANAGEMENT_PORT"

Value: "9192"

- Name: "WEB_HTTP_MANAGEMENT_PATH"

Value: "/management"

- Name: "WEB_HTTP_PROTOCOL_PORT"

Value: "9292"

- Name: "WEB_HTTP_PROTOCOL_PATH"

Value: "/protocol"

- Name: "WEB_HTTP_CONTROL_PORT"

Value: "9293"

- Name: "WEB_HTTP_CONTROL_PATH"

Value: "/control"

- Name: "WEB_HTTP_PUBLIC_PORT"

Value: "9393"

- Name: "WEB_HTTP_PUBLIC_PATH"

Value: "/public"

- Name: "EDC_DSP_CALLBACK_ADDRESS"

Value: "http://consumer:9292/protocol"

- Name: "EDC_DATAPLANE_TOKEN_VALIDATION_ENDPOINT"

Value: "http://localhost:9293/control/token"

- Name: "EDC_DATAPLANE_API_PUBLIC_BASEURL"

Value: "http://localhost:9393/public"

- Name: "EDC_DSP_HTTP_ENABLED"

http://consumer:9292/protocol
http://localhost:9293/control/token
http://localhost:9393/public

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 105

Value: "true"

- Name: "EDC_API_AUTH_KEY"

Value: "password"

- Name: "EDC_TRANSFER_PROXY_TOKEN_SIGNER_PRIVATEKEY_ALIAS"

Value: "edc.connector.private.key"

- Name: "EDC_TRANSFER_PROXY_TOKEN_VERIFIER_PUBLICKEY_ALIAS"

Value: "edc.connector.public.key"

- Name: "EDC_VAULT_HASHICORP_URL"

Value: "http://vault:8200"

- Name: "EDC_VAULT_HASHICORP_TOKEN"

Value: "test-token"

- Name: "EDC_VAULT_HASHICORP_TIMEOUT_SECONDS"

Value: "30"

- Name: "EDC_IONOS_ACCESS_KEY"

Value: "xxx"

- Name: "EDC_IONOS_SECRET_KEY"

Value: "xxx"

- Name: "EDC_IONOS_ENDPOINT_REGION"

Value: "eu-central-2"

- Name: "EDC_IONOS_TOKEN"

Value: "xxx"

Ports:

- ContainerPort: 9191

- ContainerPort: 9192

- ContainerPort: 9292

- ContainerPort: 9293

- ContainerPort: 9393

- MicroserviceName: "starlight"

Version: "1.0"

Image: "rayc/ucm-processor"

ID: "starlight"

ClusterAffinity: "processor"

Dependencies:

- "eventreceiver"

ResourceRequirements:

Cpu: "4 vCPU"

Memory: "8Gi"

http://vault:8200/

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 106

MicroservicesSLAs:

ServiceAvailability: "99.9%"

MaxResponseTime: "N/A"

DataThroughput: "High"

ReplicaCount: "1"

ServiceAccountName: "starlight-sa"

SecurityContext:

privileged: true

WorkingDirectory: "/docker/starlight/STARLIGHTv04"

Command:

- ./bash_script2.sh

Volumes:

- Name: "uc3-pv-storage"

VolumeSource:

PersistentVolumeClaim:

ClaimName: "uc3-pv-claim"

VolumeMounts:

- Name: "uc3-pv-storage"

MountPath: "/starlight/"

Ports:

- ContainerPort: 8080

- MicroserviceName: "eventreceiver"

Version: "1.0"

Image: "rayc/ucm-receiver"

ID: "eventreceiver"

ClusterAffinity: "processor"

Dependencies:

- "rabbitmq"

ResourceRequirements:

Cpu: "1 vCPU"

Memory: "2Gi"

MicroservicesSLAs:

ServiceAvailability: "99.9%"

MaxResponseTime: "N/A"

DataThroughput: "High"

ReplicaCount: "1"

EnvironmentVariables:

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 107

- Name: "RABBITMQ_USER"

Value: "guest"

- Name: "RABBITMQ_PASSWORD"

Value: "guest"

Volumes:

- Name: "uc3-pv-storage"

VolumeSource:

PersistentVolumeClaim:

ClaimName: "uc3-pv-claim"

VolumeMounts:

- Name: "uc3-pv-storage"

MountPath: "/starlight/"

Networking_graph:

- Source: "orchestrator"

Destination: "rabbitmq"

Protocol: "TCP"

Port: "5672"

- Source: "data-connector"

Destination: "orchestrator"

Protocol: "HTTP"

Port: "9192"

- Source: "eventreceiver"

Destination: "rabbitmq"

Protocol: "TCP"

Port: "5672"

- Source: "eventreceiver"

Destination: "starlight"

Protocol: "HTTP"

Port: "8080"

Global_SLA:

ServiceAvailability: "99.9%"

MaxLatency: "500 ms"

MaxResponseTime: "N/A"

DataThroughput: "High"

UC3 AppD

D.5.2. Report on Integration the CECCM

© AC3 2023 Page | 108

	1 Executive Summary
	2 Introduction
	2.1 Overview – Purpose and objectives
	2.2 Link with other project activities
	2.3 Mapping AC3 Outputs
	2.4 Deliverable Overview and Report Structure

	3 UC1
	3.1 Use Case Description
	3.1.1 Objectives
	3.1.2 UC1 Stakeholders
	3.1.2.1 End Users / Smart Building Operators
	3.1.2.2 Application/Software Developers
	3.1.2.3 Infrastructure Provider / CECCM Integrator

	3.2 Use Case Architecture
	3.2.1 Use Case Application
	3.2.2 UC Testbed – Hardware and Software
	3.2.2.1 Data Source Testbed
	3.2.2.2 Edge Compute Testbed
	3.2.2.3 Cloud Compute Testbed

	3.3 Component Integration Design
	3.4 Component Integration Status
	3.4.1 Data Management and Connectors
	3.4.2 Service Catalogue
	3.4.3 Data Source Deployment
	3.4.4 Application Descriptor – OSR
	3.4.5 LCM
	3.4.5.1 Application Deployment
	3.4.5.2 Application Adaptation
	3.4.5.3 Migration Algorithm
	3.4.5.4 AI-based LCM and Decision Enforcement Algorithms

	3.5 Remaining Integration
	3.6 UC1 Integration summary

	4 UC2
	4.1 Use Case Description
	4.1.1 Use Case Objectives
	4.1.2 UC2 Stakeholders
	4.1.2.1 Users / System Administrators
	4.1.2.2 Application Developers / DevOps
	4.1.2.3 Infrastructure Provider

	4.2 Use Case Architecture
	4.2.1 Use Case Application
	4.2.1.1 Application Components
	4.2.1.2 Component Interaction

	4.2.2 UC Testbed – Hardware and Software
	4.2.2.1 Infrastructure Details
	EURECOM Edge
	EURECOM Far Edge

	4.3 Component Integration Design
	4.4 Component Integration Status
	4.4.1 Application Interface
	4.4.2 GUI for Developer (Application Gateway)
	4.4.3 Ontology and Semantic Reasoner
	4.4.4 LCM
	4.4.4.1 Application Deployment
	4.4.4.2 Application Adaptation
	4.4.4.3 AI LCM algorithms

	4.4.5 Monitoring
	4.4.5.1 Monitoring Framework Integration
	4.4.5.2 Monitoring Metric

	4.4.6 Compute LMS
	4.4.7 Network LMS

	4.5 Remaining Integration
	4.5.1 Deployment via GUI
	4.5.2 Integration of Predictive Models with AI-based LCM
	4.5.3 Final Use Case Test

	4.6 UC2 Integration Summary

	5 UC3
	5.1 Use Case Description
	5.1.1 Use Case Objectives
	5.1.2 UC3 Stakeholders
	5.1.2.1 Users / Astronomers
	5.1.2.2 Application Developers / DevOps
	5.1.2.3 Infrastructure Provider

	5.2 Use Case Architecture
	5.2.1 Use Case Application
	5.2.1.1 Processor

	5.2.2 UC3 Testbed – Hardware and Software
	5.2.2.1 Infrastructure Details

	5.3 Component Integration Design
	5.4 Component Integration Status
	5.4.1 Application Interface
	5.4.2 Data Management and Connectors
	5.4.2.1 Piveau catalogue
	5.4.2.2 Data type and examples (.fits)
	5.4.2.3 EDC S3 Extended Connectors Developed by Ionos

	5.4.3 OSR and Application Descriptor
	5.4.4 LCM
	5.4.4.1 Application Deployment
	5.4.4.2 Application Adaptation
	5.4.4.3 AI LCM algorithms

	5.4.5 Monitoring
	5.4.5.1 Monitoring Framework Integration
	5.4.5.2 Monitoring Metrics

	5.4.6 Compute LMS
	5.4.7 Network LMS
	5.4.8 Remaining Integration
	5.4.8.1 PPXF and STECKMAP Astronomy Software
	5.4.8.2 Finalizing Metrics for Autoscaling Model
	5.4.8.3 AI Algorithms
	5.4.8.4 Maestro (LCM)

	5.5 UC3 Integration summary

	6 Conclusions
	7 References
	8 Annex I: OSR Application Descriptors
	UC1 OSR Application Descriptor
	UC2 OSR Application Descriptor
	UC3 OSR Application Descriptor

